PPGAN: Privacy-Preserving Generative Adversarial Network

Generative Adversarial Network (GAN) and its variants serve as a perfect representation of the data generation model, providing researchers with a large amount of high-quality generated data. They illustrate a promising direction for research with limited data availability. When GAN learns the seman...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) s. 985 - 989
Hlavní autoři: Liu, Yi, Peng, Jialiang, Yu, James J.Q., Wu, Yi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Generative Adversarial Network (GAN) and its variants serve as a perfect representation of the data generation model, providing researchers with a large amount of high-quality generated data. They illustrate a promising direction for research with limited data availability. When GAN learns the semantic-rich data distribution from a dataset, the density of the generated distribution tends to concentrate on the training data. Due to the gradient parameters of the deep neural network contain the data distribution of the training samples, they can easily remember the training samples. When GAN is applied to private or sensitive data, for instance, patient medical records, as private information may be leakage. To address this issue, we propose a Privacy-preserving Generative Adversarial Network (PPGAN) model, in which we achieve differential privacy in GANs by adding well-designed noise to the gradient during the model learning procedure. Besides, we introduced the Moments Accountant strategy in the PPGAN training process to improve the stability and compatibility of the model by controlling privacy loss. We also give a mathematical proof of the differential privacy discriminator. Through extensive case studies of the benchmark datasets, we demonstrate that PPGAN can generate high-quality synthetic data while retaining the required data available under a reasonable privacy budget.
AbstractList Generative Adversarial Network (GAN) and its variants serve as a perfect representation of the data generation model, providing researchers with a large amount of high-quality generated data. They illustrate a promising direction for research with limited data availability. When GAN learns the semantic-rich data distribution from a dataset, the density of the generated distribution tends to concentrate on the training data. Due to the gradient parameters of the deep neural network contain the data distribution of the training samples, they can easily remember the training samples. When GAN is applied to private or sensitive data, for instance, patient medical records, as private information may be leakage. To address this issue, we propose a Privacy-preserving Generative Adversarial Network (PPGAN) model, in which we achieve differential privacy in GANs by adding well-designed noise to the gradient during the model learning procedure. Besides, we introduced the Moments Accountant strategy in the PPGAN training process to improve the stability and compatibility of the model by controlling privacy loss. We also give a mathematical proof of the differential privacy discriminator. Through extensive case studies of the benchmark datasets, we demonstrate that PPGAN can generate high-quality synthetic data while retaining the required data available under a reasonable privacy budget.
Author Peng, Jialiang
Wu, Yi
Yu, James J.Q.
Liu, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Heilongjiang University
– sequence: 2
  givenname: Jialiang
  surname: Peng
  fullname: Peng, Jialiang
  organization: Heilongjiang University
– sequence: 3
  givenname: James J.Q.
  surname: Yu
  fullname: Yu, James J.Q.
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Yi
  surname: Wu
  fullname: Wu, Yi
  organization: Heilongjiang University
BookMark eNotjNFKwzAUQCPog859gSD9gdbcpElufCtV62DMgPo8ku5GgrOTtFT29w706XA4cK7Y-XAYiLFb4BUAt3er1jUPr7VBoyvBwVacg-JnbGkNghEIQqGES4bOdc3mvnA5zb4_li7TSHlOw0fR0UDZT2mmotnNlEefk98XG5p-Dvnzml1Evx9p-c8Fe396fGufy_VLt2qbdZkEl1NZK8SABkQMGGwkKTQC7kRvQ1RCB7BgSXve9xJqf3LsLT-VqAFk4FIu2M3fNxHR9junL5-PW7RGoZDyFwsbQ-w
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPADS47876.2019.00150
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728125831
1728125839
EndPage 989
ExternalDocumentID 8975823
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-4588b8712fb8b9fe326818d2c9bf526b1919e6a0cc314a6b18c90f52f6113b033
IEDL.DBID RIE
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530854900141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 10 07:40:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4588b8712fb8b9fe326818d2c9bf526b1919e6a0cc314a6b18c90f52f6113b033
PageCount 5
ParticipantIDs ieee_primary_8975823
PublicationCentury 2000
PublicationDate 2019-Dec
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec
PublicationDecade 2010
PublicationTitle 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)
PublicationTitleAbbrev PADSW
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.4535708
Snippet Generative Adversarial Network (GAN) and its variants serve as a perfect representation of the data generation model, providing researchers with a large amount...
SourceID ieee
SourceType Publisher
StartPage 985
SubjectTerms Data models
deep learning
Differential privacy
GAN
Generative adversarial networks
Mathematical models
moments accountant
Noise
Privacy leakage
Scalability
Stability analysis
Synthetic data
Training
Training data
Title PPGAN: Privacy-Preserving Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/8975823
WOSCitedRecordID wos000530854900141&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFHxqKwYmQC0CCigDI6aOXWKbrSoUkFAUCZC6Vf4K6pKiNq3Ev-fZqQoDC1sSD5Hzde_iu3sAV0qYzGkhCOMmEhRPEEZSkmEtrpkTCMExxPVF5LmcTlXRguudF8Z7H8Vn_iZsxrV8t7Dr8KtsIBVWt4y3oS2EaLxaW9NvStXgeVyM7l9D2EyQHqQxhzLY6X91TYmgMTn43-kOoffjvkuKHa4cQctXXZBF8TjK73BgvtH2iwTpRHjNq4-kSY4On60ktlde6fBQJXkj8O7B--ThbfxEtl0PyJxRXpNgHTVIY1hppFGlx_oKQdUxq0x5yzKDBEv5TFNreTrUuC-tojhSZmnKDeX8GDrVovInkDikd4Ir6pACD4Ww2mvqnJbOC1kyK06hG2Y9-2yCLWbbCZ_9fbgP--GyNlqOc-jUy7W_gD27qeer5WW8G9-vZItW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwGPxUChJMgFrEmwyMmDp2G9tsVaG0okSRKFK3yq-gLCnqS-LfYztVYWBhS2IpkfO675K7-wBuBVOJkYwhQlUgKBY5GIlR4mpxSQxzEBxCXEcsTflkIrIa3G29MNbaID6z934x_Ms3M73yn8paXLjqltAd2O24XcSVW2tj-42xaA17WffxzcfNePFBHJIovaH-V9-UABv9w_8d8AiaP_67KNsiyzHUbNkAnmXP3fTBDRRrqb-QF0_4B738iKrsaP_iikKD5YX0t1WUVhLvJrz3n8a9Adr0PUAFwXSJvHlUOSJDcsWVyK2rsBysGqKFyjskUY5iCZtIrDWN29Ktcy2wG8mTOKYKU3oC9XJW2lOIjCN4jApsHAluM6alldgYyY1lPCeanUHDz3r6WUVbTDcTPv978w3sD8avo-lomL5cwIE_xZWy4xLqy_nKXsGeXi-Lxfw6XJlvIMyOnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+25th+International+Conference+on+Parallel+and+Distributed+Systems+%28ICPADS%29&rft.atitle=PPGAN%3A+Privacy-Preserving+Generative+Adversarial+Network&rft.au=Liu%2C+Yi&rft.au=Peng%2C+Jialiang&rft.au=Yu%2C+James+J.Q.&rft.au=Wu%2C+Yi&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=985&rft.epage=989&rft_id=info:doi/10.1109%2FICPADS47876.2019.00150&rft.externalDocID=8975823