An Efficient Near-lossless Compression Algorithm for Multichannel EEG signals

In many biomedical measurement procedures, it is important to record a huge amount of data, to monitor the state of health of a subject. In such a context, electroencephalograph (EEG) data are one of the most demanding in terms of size and signal behavior. In this paper, we propose a near-lossless c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA) S. 1 - 6
Hauptverfasser: Campobello, Giuseppe, Quercia, Angelica, Gugliandolo, Giovanni, Segreto, Antonino, Tatti, Elisa, Ghilardi, Maria Felice, Crupi, Giovanni, Quartarone, Angelo, Donato, Nicola
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.06.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many biomedical measurement procedures, it is important to record a huge amount of data, to monitor the state of health of a subject. In such a context, electroencephalograph (EEG) data are one of the most demanding in terms of size and signal behavior. In this paper, we propose a near-lossless compression algorithm for EEG signals able to achieve a compression ratio in the order of 10 with a root-mean-square distortion less than 0.01%. The proposed algorithm exploits the fact that Principal Component Analysis is usually performed on EEG signals for denoising and removing unwanted artifacts. In this particular context, we can consider this algorithm as a good tool to ensure the best information of the signal beside an efficient compression ratio, reducing the amount of memory necessary to record data.
DOI:10.1109/MeMeA52024.2021.9478756