Event Probability Mask (EPM) and Event Denoising Convolutional Neural Network (EDnCNN) for Neuromorphic Cameras

This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel within a short time window, which we refer to as "event probability mask" or EPM. Its applications include (i) objective benchmarkin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 1698 - 1707
Hlavní autoři: Baldwin, R. Wes, Almatrafi, Mohammed, Asari, Vijayan, Hirakawa, Keigo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2020
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel within a short time window, which we refer to as "event probability mask" or EPM. Its applications include (i) objective benchmarking of event denoising performance, (ii) training convolutional neural networks for noise removal called "event denoising convolutional neural network" (EDnCNN), and (iii) estimating internal neuromorphic camera parameters. We provide the first dataset (DVSNOISE20) of real-world labeled neuromorphic camera events for noise removal.
AbstractList This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel within a short time window, which we refer to as "event probability mask" or EPM. Its applications include (i) objective benchmarking of event denoising performance, (ii) training convolutional neural networks for noise removal called "event denoising convolutional neural network" (EDnCNN), and (iii) estimating internal neuromorphic camera parameters. We provide the first dataset (DVSNOISE20) of real-world labeled neuromorphic camera events for noise removal.
Author Asari, Vijayan
Almatrafi, Mohammed
Hirakawa, Keigo
Baldwin, R. Wes
Author_xml – sequence: 1
  givenname: R. Wes
  surname: Baldwin
  fullname: Baldwin, R. Wes
  organization: Department of Electrical Engineering, University of Dayton
– sequence: 2
  givenname: Mohammed
  surname: Almatrafi
  fullname: Almatrafi, Mohammed
  organization: Department of Electrical Engineering, Umm Al-Qura University
– sequence: 3
  givenname: Vijayan
  surname: Asari
  fullname: Asari, Vijayan
  organization: Department of Electrical Engineering, University of Dayton
– sequence: 4
  givenname: Keigo
  surname: Hirakawa
  fullname: Hirakawa, Keigo
  organization: Department of Electrical Engineering, University of Dayton
BookMark eNotjE1PAjEURavRRER-gS66lMXge22nM12aAT8SQGLULXkMHa0OrekMGP69CC5uzuKee8_ZiQ_eMnaFMEAEc1O8zZ6V0AADAQIGAJhlR6xnshwzsQvqPD1mHQQtE23QnLFe03wCgBSI2uQdFkYb61s-i2FBC1e7dssn1Hzx69Fs0ufkl_wgDK0PrnH-nRfBb0K9bl3wVPOpXcc92p8Q_2ZDX0ynfV6FuO_CKsTvD1fyglY2UnPBTiuqG9v7Z5e93o1eiodk_HT_WNyOEydAtolKoUSwpQXQQqVCZEiwVNaSksus0iRNWelUAijIF2kKOwGrXBCYnEij7LLLw6-z1s6_o1tR3M4NploZLX8BpwJbJQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR42600.2020.00177
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728171685
1728171687
EISSN 1063-6919
EndPage 1707
ExternalDocumentID 9156496
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-450c10ece0062452271a0d4eea43d7f6a39cf65300408b5502711f82a098aa613
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620679501094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-450c10ece0062452271a0d4eea43d7f6a39cf65300408b5502711f82a098aa613
PageCount 10
ParticipantIDs ieee_primary_9156496
PublicationCentury 2000
PublicationDate 2020-Jun
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-Jun
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.459892
Snippet This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel...
SourceID ieee
SourceType Publisher
StartPage 1698
SubjectTerms Benchmark testing
Cameras
Hardware
Neuromorphics
Noise measurement
Noise reduction
Voltage control
Title Event Probability Mask (EPM) and Event Denoising Convolutional Neural Network (EDnCNN) for Neuromorphic Cameras
URI https://ieeexplore.ieee.org/document/9156496
WOSCitedRecordID wos000620679501094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBp6ib-JgcPDqxL27RJzt2Gl5UiKruNJE2gqK2s3cD_3iQtE8GLp5b2lUBey_vR7_seALeCBgxHOvKk0MjDcS48JmLmUWPNMCea4twNmyBpSlcrlvXA_Z4Lo5Ry4DP1YE_dv_y8klvbKpsyq2zC4j7oE0Jarta-nxKaSiZmtGPH-YhNk9fsyemvmyowsAAun_yeoeJCyGL4v8WPwPiHiwezfZQ5Bj1VnoBhlzzC7tOsR6CaW-SiNRWt9PYXXPL6Dd7Ns-UE8jKHrcFMlVVhGwTQLLDrXjz-Dq1Khzs4WLh5bFYmaTqBJql196qPyrikkDDhto9Vj8HLYv6cPHrdNAWvCFDYeDhC0kdKKkubtDrqxOcox0pxHOZExzxkUseRVeBCVJjCxRj4mgYcMcq5ifqnYFBWpToDUOcYYWOCtTYJicBUKsFjIigJlFZUnIOR3b_1ZyuYse627uLvy5fg0DqoxV9dgUGz2aprcCB3TVFvbpyXvwHiwKiV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCvo0dRPv5sEHB9albdomz7swcStFpuxtJGkCRW1l3Qb-e5O0TARffGppTwnktJxLv-87ANxy4lEcqMARXCEHhyl3KA-pQ7Q1xSxSBKd22EQUx2Q-p0kD3G-5MFJKCz6TD-bU_stPC7E2rbIeNcomNNwBuwHGnluxtbYdFV_XMiElNT_ORbTXf02erQK7rgM9A-Fyo99TVGwQGbX-t_wh6Pyw8WCyjTNHoCHzY9Cq00dYf5xlGxRDg100prwS3_6CU1a-wbthMu1ClqewMhjIvMhMiwDqBTb1q8feodHpsAcLDNePDfJ-HHehTmvtveKj0E7JBOwz08kqO-BlNJz1x049T8HJPOSvHBwg4SIppCFOGiX1yGUoxVIy7KeRCplPhQoDo8GFCNelizZwFfEYooQxHfdPQDMvcnkKoEoxwtoEK6VTEo6JkJyFESeRJ5Uk_Ay0zf4tPivJjEW9ded_X74B--PZdLKYPMZPF-DAOKtCY12C5mq5lldgT2xWWbm8th7_BtYnq9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Event+Probability+Mask+%28EPM%29+and+Event+Denoising+Convolutional+Neural+Network+%28EDnCNN%29+for+Neuromorphic+Cameras&rft.au=Baldwin%2C+R.+Wes&rft.au=Almatrafi%2C+Mohammed&rft.au=Asari%2C+Vijayan&rft.au=Hirakawa%2C+Keigo&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1698&rft.epage=1707&rft_id=info:doi/10.1109%2FCVPR42600.2020.00177&rft.externalDocID=9156496