Event Probability Mask (EPM) and Event Denoising Convolutional Neural Network (EDnCNN) for Neuromorphic Cameras
This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel within a short time window, which we refer to as "event probability mask" or EPM. Its applications include (i) objective benchmarkin...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 1698 - 1707 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2020
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel within a short time window, which we refer to as "event probability mask" or EPM. Its applications include (i) objective benchmarking of event denoising performance, (ii) training convolutional neural networks for noise removal called "event denoising convolutional neural network" (EDnCNN), and (iii) estimating internal neuromorphic camera parameters. We provide the first dataset (DVSNOISE20) of real-world labeled neuromorphic camera events for noise removal. |
|---|---|
| AbstractList | This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel within a short time window, which we refer to as "event probability mask" or EPM. Its applications include (i) objective benchmarking of event denoising performance, (ii) training convolutional neural networks for noise removal called "event denoising convolutional neural network" (EDnCNN), and (iii) estimating internal neuromorphic camera parameters. We provide the first dataset (DVSNOISE20) of real-world labeled neuromorphic camera events for noise removal. |
| Author | Asari, Vijayan Almatrafi, Mohammed Hirakawa, Keigo Baldwin, R. Wes |
| Author_xml | – sequence: 1 givenname: R. Wes surname: Baldwin fullname: Baldwin, R. Wes organization: Department of Electrical Engineering, University of Dayton – sequence: 2 givenname: Mohammed surname: Almatrafi fullname: Almatrafi, Mohammed organization: Department of Electrical Engineering, Umm Al-Qura University – sequence: 3 givenname: Vijayan surname: Asari fullname: Asari, Vijayan organization: Department of Electrical Engineering, University of Dayton – sequence: 4 givenname: Keigo surname: Hirakawa fullname: Hirakawa, Keigo organization: Department of Electrical Engineering, University of Dayton |
| BookMark | eNotjE1PAjEURavRRER-gS66lMXge22nM12aAT8SQGLULXkMHa0OrekMGP69CC5uzuKee8_ZiQ_eMnaFMEAEc1O8zZ6V0AADAQIGAJhlR6xnshwzsQvqPD1mHQQtE23QnLFe03wCgBSI2uQdFkYb61s-i2FBC1e7dssn1Hzx69Fs0ufkl_wgDK0PrnH-nRfBb0K9bl3wVPOpXcc92p8Q_2ZDX0ynfV6FuO_CKsTvD1fyglY2UnPBTiuqG9v7Z5e93o1eiodk_HT_WNyOEydAtolKoUSwpQXQQqVCZEiwVNaSksus0iRNWelUAijIF2kKOwGrXBCYnEij7LLLw6-z1s6_o1tR3M4NploZLX8BpwJbJQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR42600.2020.00177 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728171685 1728171687 |
| EISSN | 1063-6919 |
| EndPage | 1707 |
| ExternalDocumentID | 9156496 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-450c10ece0062452271a0d4eea43d7f6a39cf65300408b5502711f82a098aa613 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620679501094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:30:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-450c10ece0062452271a0d4eea43d7f6a39cf65300408b5502711f82a098aa613 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9156496 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jun |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-Jun |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.459892 |
| Snippet | This paper presents a novel method for labeling real-world neuromorphic camera sensor data by calculating the likelihood of generating an event at each pixel... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1698 |
| SubjectTerms | Benchmark testing Cameras Hardware Neuromorphics Noise measurement Noise reduction Voltage control |
| Title | Event Probability Mask (EPM) and Event Denoising Convolutional Neural Network (EDnCNN) for Neuromorphic Cameras |
| URI | https://ieeexplore.ieee.org/document/9156496 |
| WOSCitedRecordID | wos000620679501094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBp6ib-JgcPDqxL27RJzt2Gl5UiKruNJE2gqK2s3cD_3iQtE8GLp5b2lUBey_vR7_seALeCBgxHOvKk0MjDcS48JmLmUWPNMCea4twNmyBpSlcrlvXA_Z4Lo5Ry4DP1YE_dv_y8klvbKpsyq2zC4j7oE0Jarta-nxKaSiZmtGPH-YhNk9fsyemvmyowsAAun_yeoeJCyGL4v8WPwPiHiwezfZQ5Bj1VnoBhlzzC7tOsR6CaW-SiNRWt9PYXXPL6Dd7Ns-UE8jKHrcFMlVVhGwTQLLDrXjz-Dq1Khzs4WLh5bFYmaTqBJql196qPyrikkDDhto9Vj8HLYv6cPHrdNAWvCFDYeDhC0kdKKkubtDrqxOcox0pxHOZExzxkUseRVeBCVJjCxRj4mgYcMcq5ifqnYFBWpToDUOcYYWOCtTYJicBUKsFjIigJlFZUnIOR3b_1ZyuYse627uLvy5fg0DqoxV9dgUGz2aprcCB3TVFvbpyXvwHiwKiV |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCvo0dRPv5sEHB9albdomz7swcStFpuxtJGkCRW1l3Qb-e5O0TARffGppTwnktJxLv-87ANxy4lEcqMARXCEHhyl3KA-pQ7Q1xSxSBKd22EQUx2Q-p0kD3G-5MFJKCz6TD-bU_stPC7E2rbIeNcomNNwBuwHGnluxtbYdFV_XMiElNT_ORbTXf02erQK7rgM9A-Fyo99TVGwQGbX-t_wh6Pyw8WCyjTNHoCHzY9Cq00dYf5xlGxRDg100prwS3_6CU1a-wbthMu1ClqewMhjIvMhMiwDqBTb1q8feodHpsAcLDNePDfJ-HHehTmvtveKj0E7JBOwz08kqO-BlNJz1x049T8HJPOSvHBwg4SIppCFOGiX1yGUoxVIy7KeRCplPhQoDo8GFCNelizZwFfEYooQxHfdPQDMvcnkKoEoxwtoEK6VTEo6JkJyFESeRJ5Uk_Ay0zf4tPivJjEW9ded_X74B--PZdLKYPMZPF-DAOKtCY12C5mq5lldgT2xWWbm8th7_BtYnq9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Event+Probability+Mask+%28EPM%29+and+Event+Denoising+Convolutional+Neural+Network+%28EDnCNN%29+for+Neuromorphic+Cameras&rft.au=Baldwin%2C+R.+Wes&rft.au=Almatrafi%2C+Mohammed&rft.au=Asari%2C+Vijayan&rft.au=Hirakawa%2C+Keigo&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=1698&rft.epage=1707&rft_id=info:doi/10.1109%2FCVPR42600.2020.00177&rft.externalDocID=9156496 |