Nearly Optimal Pseudorandomness From Hardness

Existing proofs that deduce \text{BPP} =\mathrm{P} from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown. Specifically, assuming exponential lower bounds ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / annual Symposium on Foundations of Computer Science S. 1057 - 1068
Hauptverfasser: Doron, Dean, Moshkovitz, Dana, Oh, Justin, Zuckerman, David
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2020
Schlagworte:
ISSN:2575-8454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Existing proofs that deduce \text{BPP} =\mathrm{P} from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown. Specifically, assuming exponential lower bounds against randomized single-valued nondeterministic (SVN) circuits, we convert any randomized algorithm over inputs of length n running in time t\geq n to a deterministic one running in time t^{2+\alpha} for an arbitrarily small constant \alpha > 0 . Such a slowdown is nearly optimal, as, under complexity-theoretic assumptions, there are problems with an inherent quadratic derandomization slowdown. We also convert any randomized algorithm that errs rarely into a deterministic algorithm having a similar running time (with pre-processing). The latter derandomization result holds under weaker assumptions, of exponential lower bounds against deterministic SVN circuits. Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling circuits of size s with seed length (1 + α)log s, under the assumption that there exists a function f ∊ E that requires randomized SVN circuits of size at least 2 (1−α')n , where. α=O(α'). The construction uses, among other ideas, a new connection between pseudoentropy generators and locally list recoverable codes.
AbstractList Existing proofs that deduce \text{BPP} =\mathrm{P} from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large polynomial slowdown. We convert randomized algorithms into deterministic ones with little slowdown. Specifically, assuming exponential lower bounds against randomized single-valued nondeterministic (SVN) circuits, we convert any randomized algorithm over inputs of length n running in time t\geq n to a deterministic one running in time t^{2+\alpha} for an arbitrarily small constant \alpha > 0 . Such a slowdown is nearly optimal, as, under complexity-theoretic assumptions, there are problems with an inherent quadratic derandomization slowdown. We also convert any randomized algorithm that errs rarely into a deterministic algorithm having a similar running time (with pre-processing). The latter derandomization result holds under weaker assumptions, of exponential lower bounds against deterministic SVN circuits. Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling circuits of size s with seed length (1 + α)log s, under the assumption that there exists a function f ∊ E that requires randomized SVN circuits of size at least 2 (1−α')n , where. α=O(α'). The construction uses, among other ideas, a new connection between pseudoentropy generators and locally list recoverable codes.
Author Doron, Dean
Oh, Justin
Moshkovitz, Dana
Zuckerman, David
Author_xml – sequence: 1
  givenname: Dean
  surname: Doron
  fullname: Doron, Dean
  email: ddoron@stanford.edu
  organization: Stanford University,Department of Computer Science,Stanford,CA,USA
– sequence: 2
  givenname: Dana
  surname: Moshkovitz
  fullname: Moshkovitz, Dana
  email: danama@cs.utexas.edu
  organization: University of Texas at Austin,Department of Computer Science,Austin,TX,USA
– sequence: 3
  givenname: Justin
  surname: Oh
  fullname: Oh, Justin
  email: sjo@cs.utexas.edu
  organization: University of Texas at Austin,Department of Computer Science,Austin,TX,USA
– sequence: 4
  givenname: David
  surname: Zuckerman
  fullname: Zuckerman, David
  email: diz@cs.utexas.edu
  organization: University of Texas at Austin,Department of Computer Science,Austin,TX,USA
BookMark eNotjs1KxDAURqMoOB19Al30BVLvzU_TLKVYRxisoK6HTHMDlf4MybiYt7firA4fHD5Oxq6meSLGHhAKRLCPTVt_qNIAFAIEFAAI4oJlaESFthQoL9lKaKN5pbS6YVlK3wAKNKgV42_k4nDK28OxH92Qvyf68XN0k5_HiVLKmziP-cZF_7du2XVwQ6K7M9fsq3n-rDd827681k9b3guQR64EUefcXiilK2moFBAq2YWwdyYEJSF4tTjeek-l0wbtonTWWCcMVujlmt3___ZEtDvEJS2edlaisQjyF5XeRMc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS46700.2020.00102
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1728196213
9781728196213
EISSN 2575-8454
EndPage 1068
ExternalDocumentID 9317910
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CCF-1763311,CCF-1705028,CCF-1705028,CCF-1648712,CCF-1705028,CCF-1705028
  funderid: 10.13039/100000001
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-42eecaab2445837e620f83cffba7ff430fd442ed9dde6a5719e62c979a27181d3
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652333400094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 05:54:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-42eecaab2445837e620f83cffba7ff430fd442ed9dde6a5719e62c979a27181d3
PageCount 12
ParticipantIDs ieee_primary_9317910
PublicationCentury 2000
PublicationDate 2020-Nov.
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationTitle Proceedings / annual Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
Score 2.2487526
Snippet Existing proofs that deduce \text{BPP} =\mathrm{P} from circuit lower bounds convert randomized algorithms into deterministic algorithms with a large...
SourceID ieee
SourceType Publisher
StartPage 1057
SubjectTerms Computer science
derandomization
Generators
Hybrid power systems
Integrated circuit modeling
list-recoverable codes
Probabilistic logic
pseudo-entropy
pseudorandom generators
Runtime
Testing
Title Nearly Optimal Pseudorandomness From Hardness
URI https://ieeexplore.ieee.org/document/9317910
WOSCitedRecordID wos000652333400094&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VigGWQlvEtzwwEprESVzPFRELbSVA6lY58VmqRBLUJP39nJO0MLCwOZalSHf2PT_b7w7gAQmlae6SB6KEO7S_9RzFOTo0f7QQKkGPt8UmxHw-Xa3ksgePBy0MIjaPz_DJNpu7fF2ktT0qm0huk2kSQT8SImq1WvuoS_sON-ikcZ4rJ_Fi9hZYCQpRQN--3vLswcmvAioNfsSD__35DMY_Qjy2PEDMOfQwH8JgX4mBdQtzCKevh-yr5QicOdq0xWxB4SBTn2xZYq3J1bkuMhvZWLwtMmbv7O3XGD7i5_fZi9OVRXA2vssrMihiqlRCwBwSvcTId82Up8YkShgTcNfogMZoSZErUqHwJA1JpZDKJyDyNL-Afl7keAksdDWmiSEWZaLAGDMl8oOB8HmISCZVVzCytlh_tZkv1p0Zrv_uvoETa-xWqXcL_Wpb4x0cp7tqU27vG3d9A6unlcY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4haKJeUMD42x48OtnWbaVn4oIRBomYcCPd-pqQyGb44d_v6xjowYu3rmmy5Hvt-_rafu8BPCCxNM1dskCUcof2t56jOEeH5o8WQqXo8W2xCZEk3elUjmvwuNfCIGL5-AyfbLO8y9dFtrFHZR3JbTJNCtAPbOWsSq2187u083CDShznubITj3pvgRWhUBDo2_dbnj06-VVCpWSQuPG_f59C-0eKx8Z7kjmDGuZNaOxqMbBqaTbhZLjPv7pqgZOgTVzMRuQQFuqDjVe40WTsXBcL69tYvCwWzN7a2682vMfPk17fqQojOHPf5WuCFDFTKiVqDinAxMh3TZdnxqRKGBNw1-iAxmhJvitSofAkDcmkkMonKvI0P4d6XuR4ASx0NWapoTjKRIExpkvhDwbC5yEiQaouoWWxmH1uc1_MKhiu_u6-h6P-ZDiYDV6S12s4tsBvdXs3UF8vN3gLh9nXer5a3pWm-waqa5kP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%2F+annual+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Nearly+Optimal+Pseudorandomness+From+Hardness&rft.au=Doron%2C+Dean&rft.au=Moshkovitz%2C+Dana&rft.au=Oh%2C+Justin&rft.au=Zuckerman%2C+David&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=1057&rft.epage=1068&rft_id=info:doi/10.1109%2FFOCS46700.2020.00102&rft.externalDocID=9317910