Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems

The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained benchmark problems has been developed as a addition to CEC benchmark series. This paper proposed a hybrid variant of gaining sharing knowledge base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 IEEE Congress on Evolutionary Computation (CEC) S. 841 - 848
Hauptverfasser: Mohamed, Ali Wagdy, Hadi, Anas A., Agrawal, Prachi, Sallam, Karam M., Mohamed, Ali Khater
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 28.06.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained benchmark problems has been developed as a addition to CEC benchmark series. This paper proposed a hybrid variant of gaining sharing knowledge based algorithm with adaptive parameters and improved multi-operator differential evolution (IMODE) algorithm, called APGSK-IMODE. It enhanced the performance of recently developed adaptive gaining sharing knowledge based algorithm. The performance of APGSK-IMODE has been tested on CEC2021 benchmark problems which contains 10 test functions with dimensions 10 and 20. The results obtained from the proposed algorithm have been compared with those obtained from the rival algorithms. The results elaborate the superiority of APGSK-IMODE. APGSK-IMODE outperforms the competing algorithms with regard to quality of solution, robustness and convergence.
AbstractList The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained benchmark problems has been developed as a addition to CEC benchmark series. This paper proposed a hybrid variant of gaining sharing knowledge based algorithm with adaptive parameters and improved multi-operator differential evolution (IMODE) algorithm, called APGSK-IMODE. It enhanced the performance of recently developed adaptive gaining sharing knowledge based algorithm. The performance of APGSK-IMODE has been tested on CEC2021 benchmark problems which contains 10 test functions with dimensions 10 and 20. The results obtained from the proposed algorithm have been compared with those obtained from the rival algorithms. The results elaborate the superiority of APGSK-IMODE. APGSK-IMODE outperforms the competing algorithms with regard to quality of solution, robustness and convergence.
Author Mohamed, Ali Khater
Hadi, Anas A.
Agrawal, Prachi
Mohamed, Ali Wagdy
Sallam, Karam M.
Author_xml – sequence: 1
  givenname: Ali Wagdy
  surname: Mohamed
  fullname: Mohamed, Ali Wagdy
  email: aliwagdy@gmail.com
  organization: Cairo University,Faculty of Graduate Studies for Statistical,Operations Research Dept.,Giza,Egypt,12613
– sequence: 2
  givenname: Anas A.
  surname: Hadi
  fullname: Hadi, Anas A.
  email: anas1401@gmail.com
  organization: King Abdul-Aziz University,College of Computing and Information Technology,Jeddah,Saudi Arabia,21589
– sequence: 3
  givenname: Prachi
  surname: Agrawal
  fullname: Agrawal, Prachi
  email: prachiagrawal202@gmail.com
  organization: National Institute of Technology Hamirpur,Dept. of Mathematics and Scientific Computing,Himachal Pradesh,India
– sequence: 4
  givenname: Karam M.
  surname: Sallam
  fullname: Sallam, Karam M.
  email: karam_sallam@zu.edu.eg
  organization: Zagazig university,Faculty of Computers and Information,Zagazig,Egypt
– sequence: 5
  givenname: Ali Khater
  surname: Mohamed
  fullname: Mohamed, Ali Khater
  email: akhater@msa.eun.eg
  organization: October University for MSA,Faculty of Computer Science,Giza,Egypt,12451
BookMark eNpNkM1OwkAcxNdED4I-gTHZF2jdz3Z7LLUCEQMJeibb3T90Yz_ItoHwAjy3JXDwMnOYzOSXGaH7pm0AoVdKQkpJ8pblmZBK8pARRsNEEqGouEMjGjNFFU949IjOU-0a1-yCdan94PizaY8V2B3gie7A4rTatd71ZY2Pg-LU6n3vDoBX2usaevAdnp0K7-w1n38t3_N_pW3r8bqtDpfpgQdfUPAEGlPW2v_ilW-LCuruCT1sddXB883H6Ocj_85mwWI5nWfpInCM8D4QzIokNtIKRow1seGgjRBJZAnlStlYKirjIopAWGu4KgTTUFBgESSkkFs-Ri_XXQcAm713A8Vpc7uG_wEkFF6l
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC45853.2021.9504814
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1728183936
9781728183930
EndPage 848
ExternalDocumentID 9504814
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-42d497c5d420cdc7c3eac4496d01388d758157b66e4ddc38b42aeb1e26e90b5f3
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703866100106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:32 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-42d497c5d420cdc7c3eac4496d01388d758157b66e4ddc38b42aeb1e26e90b5f3
PageCount 8
ParticipantIDs ieee_primary_9504814
PublicationCentury 2000
PublicationDate 2021-June-28
PublicationDateYYYYMMDD 2021-06-28
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June-28
  day: 28
PublicationDecade 2020
PublicationTitle 2021 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.1340697
Snippet The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained...
SourceID ieee
SourceType Publisher
StartPage 841
SubjectTerms Benchmark testing
CEC 2021
Convergence
Evolutionary computation
GSK algorithm
Knowledge based systems
LSHADE algorithm
Numerical Optimization
Optimization
Probability
Robustness
Title Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems
URI https://ieeexplore.ieee.org/document/9504814
WOSCitedRecordID wos000703866100106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELXaigMnQC1ilw8ccZs4dhwf29JShCiVAKm3yltpRTd1QeIH-G48SSggceGUKIvicaQZz3jeewhdOh5ZamVInI0Y8fFYEaCtI4YC7FOHwsWZ2ITodpN-X_YK6GqLhXHOpc1nrgqn6V6-nZsNlMpqkgO7CSuiohAiw2rloJwwkLVmq8n84jfySR8Nq_mzv0RT0pjR3vvf1_ZR5Rt8h3vbsHKACm5WRh83mZIDAYJlf8R3X7Uw3PBxyOL65GXu8_zRFENlFdetWoAjwz0F3VdAoYk774DOyu7f3j9ct3685Jeu-HE-geoC9hZiMA43_FhGU7V8hfGA7Myqgp7bradmh-QSCmRMg2hNGLVMCsMto4GxRpjIO1rGZGxhhzKxPlsIudBx7Ji1Jko0o8p7b0djJwPNh9EhKs3mM3eEMDNS-WTFUs1jprjWnCuhAyXpkFFtkmNUhjkcLDKWjEE-fSd_Xz5Fu2AJNF3R5AyV1suNO0c75m09Xi0v0l_7CRDVpuY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmuhJDRjf7sGjhXa723aPgCCEhyRiwo3sCyHyCg8T_4C_2522oiZePLXpI93ZJjM7s_N9H0K3hvmaaO45RvvUsfFYOEBb5ygCsE_phSZIxCbCTifq93k3g-62WBhjTNx8ZgpwGu_l67naQKmsyBmwm9AdtMsoJV6C1kphOZ7Li5Vqhdrlr2_TPuIV0qd_yabEUaN2-L_vHaH8N_wOd7eB5RhlzCyHPh4SLQcHKJbtETe_qmG4bCORxqXJy9xm-qMphtoqLmmxAFeGuwL6r4BEE9ffAZ-V3G-0H--rP16yi1f8NJ9AfQFbCzEYh8t2LKOpWL7CeEB4ZpVHz7Vqr1J3UhEFZ0xcf-1QoikPFdOUuEqrUPnW1VLKAw17lJG2-YLHQhkEhmqt_EhSIqz_NiQw3JVs6J-g7Gw-M6cIU8WFTVc0kSyggknJmAilKzgZUiJVdIZyMIeDRcKTMUin7_zvyzdov95rtwatRqd5gQ7AKmjBItElyq6XG3OF9tTberxaXse_-RPpcKot
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Gaining-Sharing+Knowledge+Based+Algorithm+with+Adaptive+Parameters+Hybrid+with+IMODE+Algorithm+for+Solving+CEC+2021+Benchmark+Problems&rft.au=Mohamed%2C+Ali+Wagdy&rft.au=Hadi%2C+Anas+A.&rft.au=Agrawal%2C+Prachi&rft.au=Sallam%2C+Karam+M.&rft.date=2021-06-28&rft.pub=IEEE&rft.spage=841&rft.epage=848&rft_id=info:doi/10.1109%2FCEC45853.2021.9504814&rft.externalDocID=9504814