Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems
The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained benchmark problems has been developed as a addition to CEC benchmark series. This paper proposed a hybrid variant of gaining sharing knowledge base...
Gespeichert in:
| Veröffentlicht in: | 2021 IEEE Congress on Evolutionary Computation (CEC) S. 841 - 848 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
28.06.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained benchmark problems has been developed as a addition to CEC benchmark series. This paper proposed a hybrid variant of gaining sharing knowledge based algorithm with adaptive parameters and improved multi-operator differential evolution (IMODE) algorithm, called APGSK-IMODE. It enhanced the performance of recently developed adaptive gaining sharing knowledge based algorithm. The performance of APGSK-IMODE has been tested on CEC2021 benchmark problems which contains 10 test functions with dimensions 10 and 20. The results obtained from the proposed algorithm have been compared with those obtained from the rival algorithms. The results elaborate the superiority of APGSK-IMODE. APGSK-IMODE outperforms the competing algorithms with regard to quality of solution, robustness and convergence. |
|---|---|
| AbstractList | The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained benchmark problems has been developed as a addition to CEC benchmark series. This paper proposed a hybrid variant of gaining sharing knowledge based algorithm with adaptive parameters and improved multi-operator differential evolution (IMODE) algorithm, called APGSK-IMODE. It enhanced the performance of recently developed adaptive gaining sharing knowledge based algorithm. The performance of APGSK-IMODE has been tested on CEC2021 benchmark problems which contains 10 test functions with dimensions 10 and 20. The results obtained from the proposed algorithm have been compared with those obtained from the rival algorithms. The results elaborate the superiority of APGSK-IMODE. APGSK-IMODE outperforms the competing algorithms with regard to quality of solution, robustness and convergence. |
| Author | Mohamed, Ali Khater Hadi, Anas A. Agrawal, Prachi Mohamed, Ali Wagdy Sallam, Karam M. |
| Author_xml | – sequence: 1 givenname: Ali Wagdy surname: Mohamed fullname: Mohamed, Ali Wagdy email: aliwagdy@gmail.com organization: Cairo University,Faculty of Graduate Studies for Statistical,Operations Research Dept.,Giza,Egypt,12613 – sequence: 2 givenname: Anas A. surname: Hadi fullname: Hadi, Anas A. email: anas1401@gmail.com organization: King Abdul-Aziz University,College of Computing and Information Technology,Jeddah,Saudi Arabia,21589 – sequence: 3 givenname: Prachi surname: Agrawal fullname: Agrawal, Prachi email: prachiagrawal202@gmail.com organization: National Institute of Technology Hamirpur,Dept. of Mathematics and Scientific Computing,Himachal Pradesh,India – sequence: 4 givenname: Karam M. surname: Sallam fullname: Sallam, Karam M. email: karam_sallam@zu.edu.eg organization: Zagazig university,Faculty of Computers and Information,Zagazig,Egypt – sequence: 5 givenname: Ali Khater surname: Mohamed fullname: Mohamed, Ali Khater email: akhater@msa.eun.eg organization: October University for MSA,Faculty of Computer Science,Giza,Egypt,12451 |
| BookMark | eNpNkM1OwkAcxNdED4I-gTHZF2jdz3Z7LLUCEQMJeibb3T90Yz_ItoHwAjy3JXDwMnOYzOSXGaH7pm0AoVdKQkpJ8pblmZBK8pARRsNEEqGouEMjGjNFFU949IjOU-0a1-yCdan94PizaY8V2B3gie7A4rTatd71ZY2Pg-LU6n3vDoBX2usaevAdnp0K7-w1n38t3_N_pW3r8bqtDpfpgQdfUPAEGlPW2v_ilW-LCuruCT1sddXB883H6Ocj_85mwWI5nWfpInCM8D4QzIokNtIKRow1seGgjRBJZAnlStlYKirjIopAWGu4KgTTUFBgESSkkFs-Ri_XXQcAm713A8Vpc7uG_wEkFF6l |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC45853.2021.9504814 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728183936 9781728183930 |
| EndPage | 848 |
| ExternalDocumentID | 9504814 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-42d497c5d420cdc7c3eac4496d01388d758157b66e4ddc38b42aeb1e26e90b5f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703866100106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:32 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-42d497c5d420cdc7c3eac4496d01388d758157b66e4ddc38b42aeb1e26e90b5f3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9504814 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-June-28 |
| PublicationDateYYYYMMDD | 2021-06-28 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-June-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.1340697 |
| Snippet | The initiative to introduce new benchmark problems has drawn attention to the development of new optimization algorithms. Recently, a set of constrained... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 841 |
| SubjectTerms | Benchmark testing CEC 2021 Convergence Evolutionary computation GSK algorithm Knowledge based systems LSHADE algorithm Numerical Optimization Optimization Probability Robustness |
| Title | Gaining-Sharing Knowledge Based Algorithm with Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems |
| URI | https://ieeexplore.ieee.org/document/9504814 |
| WOSCitedRecordID | wos000703866100106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELXaigMnQC1ilw8ccZs4dhwf29JShCiVAKm3yltpRTd1QeIH-G48SSggceGUKIvicaQZz3jeewhdOh5ZamVInI0Y8fFYEaCtI4YC7FOHwsWZ2ITodpN-X_YK6GqLhXHOpc1nrgqn6V6-nZsNlMpqkgO7CSuiohAiw2rloJwwkLVmq8n84jfySR8Nq_mzv0RT0pjR3vvf1_ZR5Rt8h3vbsHKACm5WRh83mZIDAYJlf8R3X7Uw3PBxyOL65GXu8_zRFENlFdetWoAjwz0F3VdAoYk774DOyu7f3j9ct3685Jeu-HE-geoC9hZiMA43_FhGU7V8hfGA7Myqgp7bradmh-QSCmRMg2hNGLVMCsMto4GxRpjIO1rGZGxhhzKxPlsIudBx7Ji1Jko0o8p7b0djJwPNh9EhKs3mM3eEMDNS-WTFUs1jprjWnCuhAyXpkFFtkmNUhjkcLDKWjEE-fSd_Xz5Fu2AJNF3R5AyV1suNO0c75m09Xi0v0l_7CRDVpuY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gmuhJDRjf7sGjhXa723aPgCCEhyRiwo3sCyHyCg8T_4C_2522oiZePLXpI93ZJjM7s_N9H0K3hvmaaO45RvvUsfFYOEBb5ygCsE_phSZIxCbCTifq93k3g-62WBhjTNx8ZgpwGu_l67naQKmsyBmwm9AdtMsoJV6C1kphOZ7Li5Vqhdrlr2_TPuIV0qd_yabEUaN2-L_vHaH8N_wOd7eB5RhlzCyHPh4SLQcHKJbtETe_qmG4bCORxqXJy9xm-qMphtoqLmmxAFeGuwL6r4BEE9ffAZ-V3G-0H--rP16yi1f8NJ9AfQFbCzEYh8t2LKOpWL7CeEB4ZpVHz7Vqr1J3UhEFZ0xcf-1QoikPFdOUuEqrUPnW1VLKAw17lJG2-YLHQhkEhmqt_EhSIqz_NiQw3JVs6J-g7Gw-M6cIU8WFTVc0kSyggknJmAilKzgZUiJVdIZyMIeDRcKTMUin7_zvyzdov95rtwatRqd5gQ7AKmjBItElyq6XG3OF9tTberxaXse_-RPpcKot |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Gaining-Sharing+Knowledge+Based+Algorithm+with+Adaptive+Parameters+Hybrid+with+IMODE+Algorithm+for+Solving+CEC+2021+Benchmark+Problems&rft.au=Mohamed%2C+Ali+Wagdy&rft.au=Hadi%2C+Anas+A.&rft.au=Agrawal%2C+Prachi&rft.au=Sallam%2C+Karam+M.&rft.date=2021-06-28&rft.pub=IEEE&rft.spage=841&rft.epage=848&rft_id=info:doi/10.1109%2FCEC45853.2021.9504814&rft.externalDocID=9504814 |