State Space Models with Dynamical and Sparse Variances, and Inference by EM Message Passing
Sparse Bayesian learning (SBL) is a probabilistic approach to estimation problems based on representing sparsity-promoting priors by Normals with Unknown Variances. This representation blends well with linear Gaussian state space models (SSMs). However, in classical SBL the unknown variances are a p...
Uložené v:
| Vydané v: | 2019 27th European Signal Processing Conference (EUSIPCO) s. 1 - 5 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
EURASIP
01.09.2019
|
| Predmet: | |
| ISSN: | 2076-1465 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!