State Space Models with Dynamical and Sparse Variances, and Inference by EM Message Passing
Sparse Bayesian learning (SBL) is a probabilistic approach to estimation problems based on representing sparsity-promoting priors by Normals with Unknown Variances. This representation blends well with linear Gaussian state space models (SSMs). However, in classical SBL the unknown variances are a p...
Uloženo v:
| Vydáno v: | 2019 27th European Signal Processing Conference (EUSIPCO) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
EURASIP
01.09.2019
|
| Témata: | |
| ISSN: | 2076-1465 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!