State Space Models with Dynamical and Sparse Variances, and Inference by EM Message Passing

Sparse Bayesian learning (SBL) is a probabilistic approach to estimation problems based on representing sparsity-promoting priors by Normals with Unknown Variances. This representation blends well with linear Gaussian state space models (SSMs). However, in classical SBL the unknown variances are a p...

Full description

Saved in:
Bibliographic Details
Published in:2019 27th European Signal Processing Conference (EUSIPCO) pp. 1 - 5
Main Authors: Wadehn, Federico, Weber, Thilo, Loeliger, Hans-Andrea
Format: Conference Proceeding
Language:English
Published: EURASIP 01.09.2019
Subjects:
ISSN:2076-1465
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparse Bayesian learning (SBL) is a probabilistic approach to estimation problems based on representing sparsity-promoting priors by Normals with Unknown Variances. This representation blends well with linear Gaussian state space models (SSMs). However, in classical SBL the unknown variances are a priori independent, which is not suited for modeling group sparse signals, or signals whose variances have structure. To model signals with, e.g., exponentially decaying or piecewise-constant (in particular block-sparse) variances, we propose SSMs with dynamical and sparse variances (SSM-DSV). These are two-layer SSMs, where the bottom layer models physical signals, and the top layer models dynamical variances that are subject to abrupt changes. Inference and learning in these hierarchical models is performed with a message passing version of the expectation maximization (EM) algorithm, which is a special instance of the more general class of variational message passing algorithms. We validated the proposed model and estimation algorithm with two applications, using both simulated and real data. First, we implemented a block-outlier insensitive Kalman smoother by modeling the disturbance process with a SSM-DSV. Second, we used SSM-DSV to model the oculomotor system and employed EM-message passing for estimating neural controller signals from eye position data.
AbstractList Sparse Bayesian learning (SBL) is a probabilistic approach to estimation problems based on representing sparsity-promoting priors by Normals with Unknown Variances. This representation blends well with linear Gaussian state space models (SSMs). However, in classical SBL the unknown variances are a priori independent, which is not suited for modeling group sparse signals, or signals whose variances have structure. To model signals with, e.g., exponentially decaying or piecewise-constant (in particular block-sparse) variances, we propose SSMs with dynamical and sparse variances (SSM-DSV). These are two-layer SSMs, where the bottom layer models physical signals, and the top layer models dynamical variances that are subject to abrupt changes. Inference and learning in these hierarchical models is performed with a message passing version of the expectation maximization (EM) algorithm, which is a special instance of the more general class of variational message passing algorithms. We validated the proposed model and estimation algorithm with two applications, using both simulated and real data. First, we implemented a block-outlier insensitive Kalman smoother by modeling the disturbance process with a SSM-DSV. Second, we used SSM-DSV to model the oculomotor system and employed EM-message passing for estimating neural controller signals from eye position data.
Author Wadehn, Federico
Loeliger, Hans-Andrea
Weber, Thilo
Author_xml – sequence: 1
  givenname: Federico
  surname: Wadehn
  fullname: Wadehn, Federico
  organization: Signal and Information Processing Laboratory ETH Zurich,Switzerland
– sequence: 2
  givenname: Thilo
  surname: Weber
  fullname: Weber, Thilo
  organization: Signal and Information Processing Laboratory ETH Zurich,Switzerland
– sequence: 3
  givenname: Hans-Andrea
  surname: Loeliger
  fullname: Loeliger, Hans-Andrea
  organization: Signal and Information Processing Laboratory ETH Zurich,Switzerland
BookMark eNotUF1LwzAUjaLgnP0FIuQH2Jmb9CuPMqsONjao88WHcdPezMCWjaYw-u-tuqfzdbkHzi278gdPjD2AmEilQT-V62q2mi4nUoCeFFrIAtILFul84IXMdS6UvmQjKfIshiRLb1gUgjPDnShyENmIfVUddsSrI9bEF4eGdoGfXPfNX3qPe1fjjqNvfvM2EP_E1qGvKTz-uTNvqaVBc9PzcsEXFAJuia9waPHbO3ZtcRcoOuOYrV_Lj-l7PF--zabP89hJobo4gSYjDYkCYYwSmUSpoLakm1pnUqGFIsfCpsY2Im1IISAoY3QCGpHIqjG7___riGhzbN0e235znkP9AAU9VnA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/EUSIPCO.2019.8902815
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789082797039
9082797038
EISSN 2076-1465
EndPage 5
ExternalDocumentID 8902815
Genre orig-research
GroupedDBID 6IE
6IL
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-41d6e914310bb3062a231cfe9dc9623af187a8f5bfd05de3a1a13bb9419aaeef3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604567700231&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:31:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-41d6e914310bb3062a231cfe9dc9623af187a8f5bfd05de3a1a13bb9419aaeef3
PageCount 5
ParticipantIDs ieee_primary_8902815
PublicationCentury 2000
PublicationDate 2019-Sept.
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sept.
PublicationDecade 2010
PublicationTitle 2019 27th European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2019
Publisher EURASIP
Publisher_xml – name: EURASIP
SSID ssib028087106
ssib025355106
Score 1.7115272
Snippet Sparse Bayesian learning (SBL) is a probabilistic approach to estimation problems based on representing sparsity-promoting priors by Normals with Unknown...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological system modeling
Estimation
Expectation maximization
factor graphs
hierarchical state space models
Inference algorithms
Kalman filters
Message passing
Signal processing algorithms
sparse Bayesian learning
Title State Space Models with Dynamical and Sparse Variances, and Inference by EM Message Passing
URI https://ieeexplore.ieee.org/document/8902815
WOSCitedRecordID wos000604567700231&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5OCxazfZr-RcWxRsLdSWgoeSj1kplK10W8F_7yRbq4IXb0sWkmUSmPcy8_YRcmNMpF2BC2kJxEEsGAQagAWJyHJmGDfCO89NHrPBQEynclgjrZ0WBgB88xncukdfy7dLs3FXZW1XExNOUb6XZWml1fo6OzzBxPmjYshFiFQgTCvRDo8kk-3uePQw7Dy5fi48INVcv0xVfE7pHf7va45I81ucR4e7tHNMalA0yIsHjXSEDBio8zdblNRdsdK7ynFeLagqrHu_KoFOkCC73S5bfvRhN6_-oN0-7TtblFdcBYE1LtEk4173uXMfbH0TgjlGfR3EzKYgEQixUGukBFwhiDM5SGskoh2VM5EpkSc6t2FiIVJMsUhrGTOpFEAenZB6sSzglFCTagEmBWs4OFGqtlGswyhPLeZ5bfgZabjAzN6qX2PMtjE5_3v4ghy42FctWpekvl5t4Irsm_f1vFxd-_38BOKNoG0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5FBT2ptOLbHDx27Sb7aHKuLS22tdAHBQ8lj1kplK10W8F_72S3VgUv3kICyTITmG8y8-1HyL0xgXYFLkxLIPRCwcDTAMyLRD1hhnEjcuW5Sbfe74vpVA5KpLrjwgBA3nwGD26Y1_Lt0mzcU1nN1cSEY5TvR2HI_YKt9XV7eISh80fNkAsfkwE_Lmg7PJBM1prjYWfQeHYdXXhFit1-yarkUaV1_L_vOSGVb3oeHewCzykpQVomLzlspEPMgYE6hbNFRt0jK30sNOfVgqrUuvVVBnSCKbLzd1bNZzu7ffUHbfZozwmjvOIpCK3xiAoZt5qjRtvbKid4c7T72guZjUEiFGK-1pgUcIUwziQgrZGId1TCRF2JJNKJ9SMLgWKKBVrLkEmlAJLgjOylyxTOCTWxFmBisIaDo6VqG4TaD5LYYqTXhl-QsjPM7K34OcZsa5PLv6fvyGF71OvOup3-0xU5cn4oGrauyd56tYEbcmDe1_NsdZv79hNqGqO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+27th+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=State+Space+Models+with+Dynamical+and+Sparse+Variances%2C+and+Inference+by+EM+Message+Passing&rft.au=Wadehn%2C+Federico&rft.au=Weber%2C+Thilo&rft.au=Loeliger%2C+Hans-Andrea&rft.date=2019-09-01&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1&rft.epage=5&rft_id=info:doi/10.23919%2FEUSIPCO.2019.8902815&rft.externalDocID=8902815