Quasi-Stochastic Approximation and Off-Policy Reinforcement Learning
The Robbins-Monro stochastic approximation algorithm is a foundation of many algorithmic frameworks for reinforcement learning (RL), and often an efficient approach to solving (or approximating the solution to) complex optimal control problems. However, in many cases practitioners are unable to appl...
Uloženo v:
| Vydáno v: | Proceedings of the IEEE Conference on Decision & Control s. 5244 - 5251 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2019
|
| Témata: | |
| ISSN: | 2576-2370 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!