Generating Synthetic Short-Range FMCW Range-Doppler Maps Using Generative Adversarial Networks and Deep Convolutional Autoencoders

In this paper, we discuss the usage of Generative Adversarial Networks (GANs) and Deep Convolutional Autoen-coders (CAE) for creating synthetic Range-Doppler (RD) maps of Frequency-Modulated Continuous-Wave (FMCW) radars for a short-range situation with moving objects, based on measured RD maps of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE National Radar Conference (1996) S. 1 - 6
Hauptverfasser: de Oliveira, Marcio L. Lima, Bekooij, Marco J. G.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 21.09.2020
Schlagworte:
ISSN:2375-5318
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we discuss the usage of Generative Adversarial Networks (GANs) and Deep Convolutional Autoen-coders (CAE) for creating synthetic Range-Doppler (RD) maps of Frequency-Modulated Continuous-Wave (FMCW) radars for a short-range situation with moving objects, based on measured RD maps of pedestrians and cyclists. Instead of using regular mathematical functions or heavy radar simulations, we have used an Artificial Neural Network (ANN) model to generate new data. By using our synthetic data, we can automatically have ground-truth data without the need for manual labor; easily create large synthetic datasets; hardly use much computational power after training. To evaluate our method, we have trained a detector system with just synthetic data, and it was capable of detecting moving objects correctly, on actual Range-Doppler maps, 11.6% better than when using a small dataset.
AbstractList In this paper, we discuss the usage of Generative Adversarial Networks (GANs) and Deep Convolutional Autoen-coders (CAE) for creating synthetic Range-Doppler (RD) maps of Frequency-Modulated Continuous-Wave (FMCW) radars for a short-range situation with moving objects, based on measured RD maps of pedestrians and cyclists. Instead of using regular mathematical functions or heavy radar simulations, we have used an Artificial Neural Network (ANN) model to generate new data. By using our synthetic data, we can automatically have ground-truth data without the need for manual labor; easily create large synthetic datasets; hardly use much computational power after training. To evaluate our method, we have trained a detector system with just synthetic data, and it was capable of detecting moving objects correctly, on actual Range-Doppler maps, 11.6% better than when using a small dataset.
Author de Oliveira, Marcio L. Lima
Bekooij, Marco J. G.
Author_xml – sequence: 1
  givenname: Marcio L. Lima
  surname: de Oliveira
  fullname: de Oliveira, Marcio L. Lima
  email: m.l.limadeoliveira@utwente.nl
  organization: Computer Architecture for Embedded Systems, University of Twente,Enschede,The Netherlands
– sequence: 2
  givenname: Marco J. G.
  surname: Bekooij
  fullname: Bekooij, Marco J. G.
  email: marco.bekooij@nxp.com
  organization: NXP Semiconductors, University of Twente,Department of Embedded Software and Signal Processing,Eindhoven,The Netherlands
BookMark eNo1kE9PwkAQxVejiYB8Ai978VjcP21390iKoAloAhKPZNudQrXuNtsFw9VPblU8TOblvfwmL9NHF9ZZQOiWkhGlRN0ttdE-c7ZkJOYqFiNGGBkplqY8lmdoqISkgkkqVczIOeoxLpIo4VReoX7bvhGS8M7qoa8ZWPA6VHaLV0cbdhCqAq92zodoqe0W8HSRveJfGU1c09Tg8UI3LV63P8w_fgA8NgfwrfaVrvEThE_n31usrcETgAZ3XQ-u3ofK2S4f74MDWzjTEdfostR1C8PTHqD19P4le4jmz7PHbDyPKkZ4iDhozYtCMENEmXBBVSpJmSaxzI0oktIQlgONdSkKoJAQrvI0l6RgWkM3ig_Qzd_dCgA2ja8-tD9uTi_j37HraAc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/RadarConf2043947.2020.9266348
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728189420
172818942X
EISSN 2375-5318
EndPage 6
ExternalDocumentID 9266348
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-3eaa3cc72d07f53719680f6548bd7c5fd02be14af7ce1e5039b6b80c2aae2aa93
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612224900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-3eaa3cc72d07f53719680f6548bd7c5fd02be14af7ce1e5039b6b80c2aae2aa93
PageCount 6
ParticipantIDs ieee_primary_9266348
PublicationCentury 2000
PublicationDate 2020-Sept.-21
PublicationDateYYYYMMDD 2020-09-21
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-Sept.-21
  day: 21
PublicationDecade 2020
PublicationTitle Proceedings of the IEEE National Radar Conference (1996)
PublicationTitleAbbrev RadarConf20
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053237
Score 2.2064884
Snippet In this paper, we discuss the usage of Generative Adversarial Networks (GANs) and Deep Convolutional Autoen-coders (CAE) for creating synthetic Range-Doppler...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autoencoder
Convolution
Convolutional
Deep Learning
Doppler-Range
FMCW
Generative Adversarial Network
Generative adversarial networks
Generators
Neural Network
Noise measurement
Radar
Radar imaging
Synthetic Data
Training
Title Generating Synthetic Short-Range FMCW Range-Doppler Maps Using Generative Adversarial Networks and Deep Convolutional Autoencoders
URI https://ieeexplore.ieee.org/document/9266348
WOSCitedRecordID wos000612224900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-AGKMXP8D4nR70ZmFru3U7GpB4EELAD26ka18jl0EYkHj1L7fdBmrixUOTps2Wpn3be21_v99D6MZYLwHSYwRoyAjXnJM4Mj4Jlbbxs-JU5PLFr0-i34_G43hQQXdbLgwA5OAzaLpqfpevZ2rljspasfUmjEdVVBUiLLham79uwCgTu-i21NBsDaXdhjvSXMH9FHYnSL1m-YJfmVRyR9I9-N8QDlHjm5GHB1tfc4QqkB6j_R9ignX0WShIOxgzHn2kNrCzNoFH7za-JkNHIcDdXvsN51XSmdnoExa4J-cZzmEDePP4GnCepTmTzjZxv8CJZ1imGncA5tgOaV0arO2_Xy1nTgzTAaIb6KX78Nx-JGWGBTKlHlsSBlIypQTVnjABE_ZzjDzjUsknWqjAaI8m4HNphAIfAo_FSZhEnqJSgi0xO0G1dJbCKcJKsCASNAQtEh7ELIqMuxI1OuExN0FwhupuNifzQkRjUk7k-d_NF2jPLZgDZlD_EtWWixVcoR21Xk6zxXW-8l8kwLG7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8QgFH5xi8vFPe5y0JsowzK0R6NONM5MjPttQuERvXQmsyVe_eVCW7fEiwcSQkND6KPvAd_3PYADH7wEGiYo8rqg0klJ08TXaN26ED9byXUhX_zY1O128vyc3kzA0RcXBhEL8Bkex2pxl--6dhSPyk7S4E2ETCZhWknJWcnW-vzvKsGFnoXDSkXz5NaEjXikzZXsTx32gpwdV6_4lUulcCWNxf8NYgnWvjl55ObL2yzDBOYrsPBDTnAV3ksN6QhkJndveQjtglWQu5cQYdPbSCIgjdbZEymq9Lwb4k_sk5bpDUgBHCCf3cdIijzNAxOtk7RLpPiAmNyRc8QeCUMaVyYbnp-Oht0ohxkh0Wvw0Li4P7ukVY4F-sqZGFKBxghrNXdMeyV0WJAJ8zGZfOa0Vd4xnmFNGq8t1lAxkWb1LGGWG4OhpGIdpvJujhtArBYq0byOTmdSpSJJfLwU9S6TqfRKbcJqnM1Or5TR6FQTufV38z7MXd63mp3mVft6G-bjx4swDV7bgalhf4S7MGPHw9dBf6-wgg-K3bUC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+IEEE+National+Radar+Conference+%281996%29&rft.atitle=Generating+Synthetic+Short-Range+FMCW+Range-Doppler+Maps+Using+Generative+Adversarial+Networks+and+Deep+Convolutional+Autoencoders&rft.au=de+Oliveira%2C+Marcio+L.+Lima&rft.au=Bekooij%2C+Marco+J.+G.&rft.date=2020-09-21&rft.pub=IEEE&rft.eissn=2375-5318&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FRadarConf2043947.2020.9266348&rft.externalDocID=9266348