TV Guidance Simulation Platform Based on Deep Learning

Hardware-in-the-Loop TV Guidance System Simulation Platform (HIL-GSS) is an experimental platform designed by the School of Astronautics, Beihang University, which is used for the hardware-in-the-loop simulation of TV guided missile-target engagement. The platform has been applied to research and ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE ... International Conference on Cybernetics and Intelligent Systems (Print) s. 89 - 94
Hlavní autoři: Yu, Zhaowei, Chen, Wanchun, Chen, Zhongyuan, Liu, Xiaoming
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2019
Témata:
ISSN:2326-8239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hardware-in-the-Loop TV Guidance System Simulation Platform (HIL-GSS) is an experimental platform designed by the School of Astronautics, Beihang University, which is used for the hardware-in-the-loop simulation of TV guided missile-target engagement. The platform has been applied to research and experiment for many years and highly praised. However, the platform currently has the following problems: 1) Fidelity of the fixed-size target is not high enough; 2) The target recognition algorithm is only based on color feature; 3) The contour recognition algorithm based on Hu moments detects the target with slow speed and poor accuracy. In order to solve above problems, we tried to improve the contour recognition algorithm firstly. Secondly, we used 3D model to build the scene of target simulation with Unity 3D. Thirdly, we applied YOLO, a deep-learning-based target recognition algorithm, to achieve accurate recognition of targets in different attitudes. In the end, several experiments were carried out by using YOLO and color-based target recognition algorithm respectively to verify the feasibility of using YOLO for TV guidance simulation experiment.
AbstractList Hardware-in-the-Loop TV Guidance System Simulation Platform (HIL-GSS) is an experimental platform designed by the School of Astronautics, Beihang University, which is used for the hardware-in-the-loop simulation of TV guided missile-target engagement. The platform has been applied to research and experiment for many years and highly praised. However, the platform currently has the following problems: 1) Fidelity of the fixed-size target is not high enough; 2) The target recognition algorithm is only based on color feature; 3) The contour recognition algorithm based on Hu moments detects the target with slow speed and poor accuracy. In order to solve above problems, we tried to improve the contour recognition algorithm firstly. Secondly, we used 3D model to build the scene of target simulation with Unity 3D. Thirdly, we applied YOLO, a deep-learning-based target recognition algorithm, to achieve accurate recognition of targets in different attitudes. In the end, several experiments were carried out by using YOLO and color-based target recognition algorithm respectively to verify the feasibility of using YOLO for TV guidance simulation experiment.
Author Yu, Zhaowei
Liu, Xiaoming
Chen, Wanchun
Chen, Zhongyuan
Author_xml – sequence: 1
  givenname: Zhaowei
  surname: Yu
  fullname: Yu, Zhaowei
  organization: Beihang University,School of Astronautics,Beijing,China
– sequence: 2
  givenname: Wanchun
  surname: Chen
  fullname: Chen, Wanchun
  organization: Beihang University,School of Astronautics,Beijing,China
– sequence: 3
  givenname: Zhongyuan
  surname: Chen
  fullname: Chen, Zhongyuan
  organization: Beihang University,School of Astronautics,Beijing,China
– sequence: 4
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
  organization: Beihang University,School of Astronautics,Beijing,China
BookMark eNotj8tOwzAURA0Cibb0C9iYD0jw9Sv2soRSKgWBaGFbOfE1MmqcKmkX_D2R6GyONIujmSm5Sl1CQu6B5QDMPpTrTfaxeJUFKJFzBja3zCoD8oJMoeAGhFSmuCQTLrjODBf2hsyH4YcxJsCMEROit190dYrepQbpJranvTvGLtH3kaHrW_roBvR0bJ4QD7RC16eYvm_JdXD7Aednzsjn83JbvmTV22pdLqosciaOmfAMA0PrpZZeaQBVN4x70L5uUHFfAIJxIdTaokQmsK6FQuQcpcIwDpyRu39vRMTdoY-t639355viD-uXSWo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIS-RAM47153.2019.9095814
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728134587
9781728134581
EISSN 2326-8239
EndPage 94
ExternalDocumentID 9095814
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-3d0ef0e9d464d56115bc02d16dbce52d71e18affb69e4e03ebb35ee22e45ef883
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587894400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:42:29 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-3d0ef0e9d464d56115bc02d16dbce52d71e18affb69e4e03ebb35ee22e45ef883
PageCount 6
ParticipantIDs ieee_primary_9095814
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle IEEE ... International Conference on Cybernetics and Intelligent Systems (Print)
PublicationTitleAbbrev CIS-RAM
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188883
Score 1.7041723
Snippet Hardware-in-the-Loop TV Guidance System Simulation Platform (HIL-GSS) is an experimental platform designed by the School of Astronautics, Beihang University,...
SourceID ieee
SourceType Publisher
StartPage 89
SubjectTerms Computational modeling
Hu moments
Image segmentation
Machine learning
Solid modeling
Target recognition
target simulation
Three-dimensional displays
TV guidance
Unity3D
YOLO
Title TV Guidance Simulation Platform Based on Deep Learning
URI https://ieeexplore.ieee.org/document/9095814
WOSCitedRecordID wos000587894400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qEdGLj1Z8E8Gjqdk8NpujVqseLMVW6a1sNrOyB9tSW3-_yXapCl7MJWEgkMyEzEcyMx_AhZOIHkg4KjGVVHqXR61znFqjUDMrtU5tSTahu91kODS9GlyucmEQsQw-w1YYln_5bpItwlPZlfF4IAms1Wtax8tcrdV7ij-bvokNOK_KaF61H_v0-frJ375KhBgu06rm_yJSKf1IZ_t_K9iB5ndCHumtXM0u1HC8B1s_agk2IB68kvtF4YIVSb94r2i5SM_3AZiSG--vHPGSW8QpqeqqvjXhpXM3aD_QihSBFpyJORWOYc7QOBlL58FPpGzGuItiZzNU3OkIoyTNcxsblMgEWisUIucoFeZeQ_tQH0_GeABEqDjzxhC5YInkGRqNWuYCPYbDlOvoEBpBA6Ppsu7FqNr80d_iY9gMSl7m6Z1AfT5b4CmsZ5_z4mN2VhrrCz7zlJw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QND4uPsD4dk08Wuj2sd09-kKIQIig4Ua221mzB4Eg-Pttlw1q4sVe2syhaWeazpd2Zj6AKyMQLZAwRGAsiLAuj2hjGNGRREW1UCrWOdmE6nbD4TDqleB6lQuDiHnwGdbcMP_LN5Nk4Z7K6pHFA6FjrV6TQjC6zNZavajY02kb34DLopBm_a7VJ883HXv_Su6iuKJaMcMvKpXckzR2_reGXah-p-R5vZWz2YMSjvdh-0c1wQoEg1fvcZEZZ0evn70XxFxez_YOmnq31mMZz0ruEadeUVn1rQovjYfBXZMUtAgkY5TPCTcUU4qREYEwFv74UieUGT8wOkHJjPLRD-M01UGEAilHrblEZAyFxNRq6ADK48kYD8HjMkisOXjKaShYgpFCJVKOFsVhzJR_BBWngdF0WfliVGz--G_xBWw2B532qN3qPp3AllP4MmvvFMrz2QLPYD35nGcfs_PccF8tgJfj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+...+International+Conference+on+Cybernetics+and+Intelligent+Systems+%28Print%29&rft.atitle=TV+Guidance+Simulation+Platform+Based+on+Deep+Learning&rft.au=Yu%2C+Zhaowei&rft.au=Chen%2C+Wanchun&rft.au=Chen%2C+Zhongyuan&rft.au=Liu%2C+Xiaoming&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2326-8239&rft.spage=89&rft.epage=94&rft_id=info:doi/10.1109%2FCIS-RAM47153.2019.9095814&rft.externalDocID=9095814