Research on denoising and segmentation algorithm application of pigs' point cloud based on DBSCAN and PointNet

At present, 3D vision technology has been more and more applied in the field of livestock breading industry. Three depth cameras are installed in the data acquisition walkway from different views, as the animals pass through the walkway, the depth cameras will get the local point cloud of livestock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) S. 42 - 47
Hauptverfasser: Lin, Runheng, Hu, Hao, Wen, Zhikun, Yin, Ling
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 03.11.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract At present, 3D vision technology has been more and more applied in the field of livestock breading industry. Three depth cameras are installed in the data acquisition walkway from different views, as the animals pass through the walkway, the depth cameras will get the local point cloud of livestock at the same time. By this method the livestock point cloud exists inevitable noise, as well as the background point cloud including railing and ground. Therefore, the segmentation of livestock point cloud from the original point cloud mixed with noise and background is the important first step of the application of three-dimensional vision in livestock breading industry. This paper proposed using the PointNet++ model to separate the target point cloud from the background point cloud. The improved DBSCAN clustering algorithm is proposed to denoise and segment the data preliminarily, which is helpful to label the data manually. The labeled data are used to train the PointNet++ neural network model to extract target point cloud efficiently and accurately. The experimental results show that the mean Intersection over Union (MIOU) of pig target point cloud segmentation based on single-scale grouping and multi-scale grouping Pointnet++ are 0.932 and 0.940, respectively, which both obtain good segmentation results.
AbstractList At present, 3D vision technology has been more and more applied in the field of livestock breading industry. Three depth cameras are installed in the data acquisition walkway from different views, as the animals pass through the walkway, the depth cameras will get the local point cloud of livestock at the same time. By this method the livestock point cloud exists inevitable noise, as well as the background point cloud including railing and ground. Therefore, the segmentation of livestock point cloud from the original point cloud mixed with noise and background is the important first step of the application of three-dimensional vision in livestock breading industry. This paper proposed using the PointNet++ model to separate the target point cloud from the background point cloud. The improved DBSCAN clustering algorithm is proposed to denoise and segment the data preliminarily, which is helpful to label the data manually. The labeled data are used to train the PointNet++ neural network model to extract target point cloud efficiently and accurately. The experimental results show that the mean Intersection over Union (MIOU) of pig target point cloud segmentation based on single-scale grouping and multi-scale grouping Pointnet++ are 0.932 and 0.940, respectively, which both obtain good segmentation results.
Author Wen, Zhikun
Lin, Runheng
Hu, Hao
Yin, Ling
Author_xml – sequence: 1
  givenname: Runheng
  surname: Lin
  fullname: Lin, Runheng
  organization: South China Agricultural University,College of Mathematics and Informatics,Guangzhou,China
– sequence: 2
  givenname: Hao
  surname: Hu
  fullname: Hu, Hao
  organization: South China Agricultural University,College of Mathematics and Informatics,Guangzhou,China
– sequence: 3
  givenname: Zhikun
  surname: Wen
  fullname: Wen, Zhikun
  organization: South China Agricultural University,College of Mathematics and Informatics,Guangzhou,China
– sequence: 4
  givenname: Ling
  surname: Yin
  fullname: Yin, Ling
  email: yin_ling@scau.edu.cn
  organization: South China Agricultural University,College of Mathematics and Informatics,Guangzhou,China
BookMark eNotkDtPwzAUhY0EA5T-AhZPMKX4EcfxGAIFpFIQj7ly7ZvUUmJHjhn4901pp6N7PumT7rlC5z54QOiWkgWlRN2_QYqhaqNbhigYL9WCEUYXqmClIPQMzZUsaVGInAjO6SXynzCCjmaHg8cWfHCj8y3W3uIR2h580slNSHdtiC7teqyHoXPm2IYGD64d7_AQnE_YdOHX4q0ewR50jw9fdbX-d30c-BrSNbpodDfC_JQz9LN8-q5fstX782tdrTLHCE8Z1zZvpCoZYwXRTQlym5PGAGVGyumcyPQNF2bqFRjDpBUl5LmxDaUAlM_QzdHrAGAzRNfr-Lc5rcD3lRZbrw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MetroAgriFor52389.2021.9628501
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665405331
1665405333
EndPage 47
ExternalDocumentID 9628501
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-3ad4f79822260af8e7b40fce12c77f8e98250135c7b49ecc27d58e44cdf11ee13
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794138700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:48 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-3ad4f79822260af8e7b40fce12c77f8e98250135c7b49ecc27d58e44cdf11ee13
PageCount 6
ParticipantIDs ieee_primary_9628501
PublicationCentury 2000
PublicationDate 2021-Nov.-3
PublicationDateYYYYMMDD 2021-11-03
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
PublicationTitleAbbrev MetroAgriFor
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8100514
Snippet At present, 3D vision technology has been more and more applied in the field of livestock breading industry. Three depth cameras are installed in the data...
SourceID ieee
SourceType Publisher
StartPage 42
SubjectTerms Cluster
Clustering algorithms
Deep Learning
Neural networks
Point cloud compression
Point Cloud Segmentation
PointNet
Production
Tagging
Three-dimensional displays
Training
Title Research on denoising and segmentation algorithm application of pigs' point cloud based on DBSCAN and PointNet
URI https://ieeexplore.ieee.org/document/9628501
WOSCitedRecordID wos000794138700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8MgECdzMcYnNZvxOzwYfbFzLWXQxzldfNBmiZrsbaFwzCYbLF3n3y90dWrii2_AhSNwgeM4fncIXbIoE7SXsUBEPoUZ7ULAOSSBEjGLNBOcqkrSTyxN-XicjBroZoOFAYDq8xl0fLHy5SsrV_6p7DbxeD8P1tpirLfGau2gqzps5u0zlIXtT4t8aAtnXnEPQ4nCTt3pV_aUSnkM9_437D5qf6Pw8GijXw5QA0wLma-vctga7M4Mm3tjHwuj8BKm8xpJZLCYTa2z-9_n-IeLGluNF_l0eY0XNjclljO7UtgrMuXZ3d-9DPppxWvk6SmUbfQ2fHgdPAZ1zoQgj7qkDIhQsWY-KJ8zVITmwLK4qyWEkWTMVR3FTYVQ6doTJ76IKcohjqXSYQgQkkPUNNbAEcLU7XaduSsBEZkPyyaIZFz0KNGEuCI9Ri2_VpPFOizGpF6mk7-bT9GuF0cF4yNnqFkWKzhH2_KjzJfFRSXLT4TTovI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8IGvVJDRi_7YPRFwds3eh4RJRghIVETHgjXXudS6AlY_j3286JmvjiW9tLr2kv7fV6_d0hdE29mAXtmDrMsynMghY4YQgdRzCfepKyMBCFpIc0isLptDOuoLsNFgYAis9n0LDFwpcvNF_bp7Jmx-L9LFhry2bOKtFaO-imDJzZHEGe6W6SpX2dGQMrtEAUz22U3X7lTynUR3__fwMfoPo3Dg-PNxrmEFVA1ZD6-iyHtcLm1NCpNfcxUwKvIFmUWCKF2TzRxvJ_W-AfTmqsJV6myeoWL3Wqcsznei2wVWXCsnu4f-l1o4LX2NIjyOvotf846Q2cMmuCk3otkjuECV9SG5bPmCpMhkBjvyU5uB6n1FQNxUyFBNy0d4wAPSqCEHyfC-m6AC45QlWlFRwjHJj9LmNzKSAstoHZGOE0ZO2ASEJMMThBNbtWs-VnYIxZuUynfzdfod3BZDScDZ-i5zO0Z0VTgPrIOarm2Rou0DZ_z9NVdlnI9QMtqaY7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Workshop+on+Metrology+for+Agriculture+and+Forestry+%28MetroAgriFor%29&rft.atitle=Research+on+denoising+and+segmentation+algorithm+application+of+pigs%27+point+cloud+based+on+DBSCAN+and+PointNet&rft.au=Lin%2C+Runheng&rft.au=Hu%2C+Hao&rft.au=Wen%2C+Zhikun&rft.au=Yin%2C+Ling&rft.date=2021-11-03&rft.pub=IEEE&rft.spage=42&rft.epage=47&rft_id=info:doi/10.1109%2FMetroAgriFor52389.2021.9628501&rft.externalDocID=9628501