A Learning Approach to Cooperative Communication System Design

The cooperative relay network is a type of multi-terminal communication system. We present in this paper a Neural Network (NN)-based autoencoder (AE) approach to optimize its design. This approach implements a classical three-node cooperative system as one AE model, and uses a two-stage scheme to tr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 5240 - 5244
Hlavní autori: Lu, Yuxin, Cheng, Peng, Chen, Zhuo, Mow, Wai Ho, Li, Yonghui
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2020
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The cooperative relay network is a type of multi-terminal communication system. We present in this paper a Neural Network (NN)-based autoencoder (AE) approach to optimize its design. This approach implements a classical three-node cooperative system as one AE model, and uses a two-stage scheme to train this model and minimize the designed losses. We demonstrate that this approach shows performance close to the best baseline in decode-and-forward (DF), and outperforms the best baseline in amplify-and-forward (AF), over a wide range of signal-to-noise-ratio (SNR) values. It is also shown that training at a list of mixed SNR values can improve the error performance compared to training at a fixed SNR value. Moreover, to verify the robustness of the trained AE model, we test it under the effect of impulse-noise.
ISSN:2379-190X
DOI:10.1109/ICASSP40776.2020.9054093