A Learning Approach to Cooperative Communication System Design
The cooperative relay network is a type of multi-terminal communication system. We present in this paper a Neural Network (NN)-based autoencoder (AE) approach to optimize its design. This approach implements a classical three-node cooperative system as one AE model, and uses a two-stage scheme to tr...
Uložené v:
| Vydané v: | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 5240 - 5244 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2020
|
| Predmet: | |
| ISSN: | 2379-190X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The cooperative relay network is a type of multi-terminal communication system. We present in this paper a Neural Network (NN)-based autoencoder (AE) approach to optimize its design. This approach implements a classical three-node cooperative system as one AE model, and uses a two-stage scheme to train this model and minimize the designed losses. We demonstrate that this approach shows performance close to the best baseline in decode-and-forward (DF), and outperforms the best baseline in amplify-and-forward (AF), over a wide range of signal-to-noise-ratio (SNR) values. It is also shown that training at a list of mixed SNR values can improve the error performance compared to training at a fixed SNR value. Moreover, to verify the robustness of the trained AE model, we test it under the effect of impulse-noise. |
|---|---|
| AbstractList | The cooperative relay network is a type of multi-terminal communication system. We present in this paper a Neural Network (NN)-based autoencoder (AE) approach to optimize its design. This approach implements a classical three-node cooperative system as one AE model, and uses a two-stage scheme to train this model and minimize the designed losses. We demonstrate that this approach shows performance close to the best baseline in decode-and-forward (DF), and outperforms the best baseline in amplify-and-forward (AF), over a wide range of signal-to-noise-ratio (SNR) values. It is also shown that training at a list of mixed SNR values can improve the error performance compared to training at a fixed SNR value. Moreover, to verify the robustness of the trained AE model, we test it under the effect of impulse-noise. |
| Author | Lu, Yuxin Mow, Wai Ho Cheng, Peng Li, Yonghui Chen, Zhuo |
| Author_xml | – sequence: 1 givenname: Yuxin surname: Lu fullname: Lu, Yuxin organization: The Hong Kong University of Science and Technology,Department of Electronic and Computer Engineering,Hong Kong SAR,China – sequence: 2 givenname: Peng surname: Cheng fullname: Cheng, Peng organization: The University of Sydney, Maze Crescent,School of Electrical and Information Engineering,NSW,Australia,2006 – sequence: 3 givenname: Zhuo surname: Chen fullname: Chen, Zhuo organization: Data 61, CSIRO, Marsfield,NSW,Australia,2122 – sequence: 4 givenname: Wai Ho surname: Mow fullname: Mow, Wai Ho organization: The Hong Kong University of Science and Technology,Department of Electronic and Computer Engineering,Hong Kong SAR,China – sequence: 5 givenname: Yonghui surname: Li fullname: Li, Yonghui organization: The University of Sydney, Maze Crescent,School of Electrical and Information Engineering,NSW,Australia,2006 |
| BookMark | eNotj8FKxDAURaMoODPOF7jJD7S-JmnTbIRSHRUKClVwN7ykr2PEpqWtwvy9BWd1791czlmzi9AHYownECcJmNvnsqjrVwVaZ7EAAbGBVIGRZ2xrdJ6kYCDLZJKes5WQ2kSJgY8rtp6mLwDItcpX7K7gFeEYfDjwYhjGHt0nn3te9v1AI87-l5bedT_Bu2X1gdfHaaaO39PkD-GaXbb4PdH2lBv2vnt4K5-i6uVxoasiL0DOkUShKUVtMpcDioacAEtoFeZON4SmldIa2TqFi4dc0BxazKQVeWsb5eSG3fz_eiLaD6PvcDzuT7ryDwkOTUc |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP40776.2020.9054093 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781509066315 1509066314 |
| EISSN | 2379-190X |
| EndPage | 5244 |
| ExternalDocumentID | 9054093 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i203t-3a27e5a796c80a2dec20beab4a8c7dea9f33b93fc4a2023874caba63b28fbd4c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615970405100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:46:49 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-3a27e5a796c80a2dec20beab4a8c7dea9f33b93fc4a2023874caba63b28fbd4c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9054093 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-May |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008748 |
| Score | 2.1189213 |
| Snippet | The cooperative relay network is a type of multi-terminal communication system. We present in this paper a Neural Network (NN)-based autoencoder (AE) approach... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 5240 |
| SubjectTerms | Artificial neural networks Autoen-coder Communication systems Cooperative systems Neural network Relay network Robustness Signal to noise ratio Testing Training |
| Title | A Learning Approach to Cooperative Communication System Design |
| URI | https://ieeexplore.ieee.org/document/9054093 |
| WOSCitedRecordID | wos000615970405100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_Yhge9-NjENzl4tFva1Ca5CGM69DIGU9htJF-_yC7rmJ1_v01bqwMv3kIgBH6BfHn8HgC3ZBN0ZGXgeIJBbI0JlAtVcUuxwkbc8RCxDJuQk4maz_W0BXeNFoaISvIZ9X2z_MtPM9z6p7KB9ucLLdrQljKptFrNrqtkrL6ZOlwPXkbD2Wwae7Oa4hIY8X49didEpawh48P_zX4EvR8xHps2ZeYYWrQ6gYNfPoJdeBiy2if1nQ1rk3CWZ2yUZWuqrL3ZjhKEVUbl7LHkb_Tgbfz0OnoO6mCEYBlxkQfCRJLujdQJKm6ilDDiloyNjUKZktFOCKuFw9j4dPQCGjTWJAX4ytk0RnEKnVW2ojNgUgkRhpq8MXssXGSccNZYxNSiDU14Dl2PxGJdeV8sahAu_u6-hH0PdkUIvIJOvtnSNezhZ7782NyUC_YF2L-ZHg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHP4xp6BefGzi2xw82i1Nsia5CGM6NpxjsAm7jSRNZJd1zM6_36at04EXbyEQAl8gvzy-B8C91ZFxVvPA4cgETCsVCBeK7JaiqSbY4dCYPGyCD4diOpWjCjxstDDW2px8Zhu-mf_lx4lZ-6eypvTnC0l3YLfFGMGFWmuz7wrOxDdXB8tmv9Mej0fM29Vk10CCG-XorRiVvIp0j_43_zHUf-R4aLQpNCdQsYtTOPzlJFiDxzYqnVLfUbu0CUdpgjpJsrSFuTfa0oKgwqocPeUMjjq8dZ8nnV5QRiMEc4JpGlBFuG0pLiMjsCKxNQRrqzRTwvDYKuko1ZI6w5TPR8-gMUqrKINfOB0zQ8-gukgW9hwQF5SGobTemp1RR5SjTittTKyNDlV4ATWPxGxZuF_MShAu_-6-g_3e5HUwG_SHL1dw4IEv6IHXUE1Xa3sDe-YznX-sbvPF-wIAF5xl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=A+Learning+Approach+to+Cooperative+Communication+System+Design&rft.au=Lu%2C+Yuxin&rft.au=Cheng%2C+Peng&rft.au=Chen%2C+Zhuo&rft.au=Mow%2C+Wai+Ho&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=5240&rft.epage=5244&rft_id=info:doi/10.1109%2FICASSP40776.2020.9054093&rft.externalDocID=9054093 |