Ultrasound Anomaly Detection Based on Variational Autoencoders
Analysis of ultrasonic testing (UT) data is a time-consuming assignment. In order to make it less demanding we propose an approach based on a variational autoencoder (VAE) to filter out the scans without anomalies/defects and in doing so, partially automate the procedure. The implemented approach us...
Uloženo v:
| Vydáno v: | 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA) s. 225 - 229 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
13.09.2021
|
| Témata: | |
| ISSN: | 1849-2266 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Analysis of ultrasonic testing (UT) data is a time-consuming assignment. In order to make it less demanding we propose an approach based on a variational autoencoder (VAE) to filter out the scans without anomalies/defects and in doing so, partially automate the procedure. The implemented approach uses an additional encoder network allowing to encode the reconstructed images. The differences in encodings of input and reconstructed images have shown to be good indicators of anomalous data. Anomaly detection results surpass the results of other VAE based anomaly criteria. |
|---|---|
| ISSN: | 1849-2266 |
| DOI: | 10.1109/ISPA52656.2021.9552041 |