Adaptive Function Launching Acceleration in Serverless Computing Platforms

Serverless computing has emerged as a new compelling paradigm for the deployment of applications and services, which enables developers to focus more on business logic rather than on infrastructure. Serverless computing platform enables the function container scales to zero, which results in a serio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) s. 9 - 16
Hlavní autoři: Xu, Zhengjun, Zhang, Haitao, Geng, Xin, Wu, Qiong, Ma, Huadong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2019
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Serverless computing has emerged as a new compelling paradigm for the deployment of applications and services, which enables developers to focus more on business logic rather than on infrastructure. Serverless computing platform enables the function container scales to zero, which results in a serious problem called cold start. Cold start severely affects the responsiveness of serverless computing platform and limits the use and adoption of serverless computing by a broader range of applications. The traditional strategies reduce the cold start latency at the expense of resources. How to simultaneously minimize the cold start latency and reduce the resources consumption of strategy implementation is a challenging problem. In this paper, we firstly propose an Adaptive Warm-Up Strategy (AWUS) to predict the function invoking time and warm up the functions, thus reducing the cold start latency. We use the function chain model to improve the AWUS. We adopt a fine-grained regression method to predict non-first functions in the function chain more accurately. Secondly, we propose an Adaptive Container Pool Scaling Strategy (ACPSS) to reduce the function launching time. We dynamically adjust the capacity of the container pool to reduce the resources waste. The AWUS and ACPSS work together to reduce the cold start latency and the resources waste. Finally, we implement a serverless computing platform and conduct extensive experiments to evaluate our strategy. The evaluation results demonstrate the effectiveness of our strategies.
AbstractList Serverless computing has emerged as a new compelling paradigm for the deployment of applications and services, which enables developers to focus more on business logic rather than on infrastructure. Serverless computing platform enables the function container scales to zero, which results in a serious problem called cold start. Cold start severely affects the responsiveness of serverless computing platform and limits the use and adoption of serverless computing by a broader range of applications. The traditional strategies reduce the cold start latency at the expense of resources. How to simultaneously minimize the cold start latency and reduce the resources consumption of strategy implementation is a challenging problem. In this paper, we firstly propose an Adaptive Warm-Up Strategy (AWUS) to predict the function invoking time and warm up the functions, thus reducing the cold start latency. We use the function chain model to improve the AWUS. We adopt a fine-grained regression method to predict non-first functions in the function chain more accurately. Secondly, we propose an Adaptive Container Pool Scaling Strategy (ACPSS) to reduce the function launching time. We dynamically adjust the capacity of the container pool to reduce the resources waste. The AWUS and ACPSS work together to reduce the cold start latency and the resources waste. Finally, we implement a serverless computing platform and conduct extensive experiments to evaluate our strategy. The evaluation results demonstrate the effectiveness of our strategies.
Author Zhang, Haitao
Wu, Qiong
Xu, Zhengjun
Ma, Huadong
Geng, Xin
Author_xml – sequence: 1
  givenname: Zhengjun
  surname: Xu
  fullname: Xu, Zhengjun
  organization: Beijing University of Posts and Telecommunications, China
– sequence: 2
  givenname: Haitao
  surname: Zhang
  fullname: Zhang, Haitao
  organization: Beijing University of Posts and Telecommunications, China
– sequence: 3
  givenname: Xin
  surname: Geng
  fullname: Geng, Xin
  organization: Beijing University of Posts and Telecommunications, China
– sequence: 4
  givenname: Qiong
  surname: Wu
  fullname: Wu, Qiong
  organization: Beijing University of Posts and Telecommunications, China
– sequence: 5
  givenname: Huadong
  surname: Ma
  fullname: Ma, Huadong
  organization: Beijing University of Posts and Telecommunications, China
BookMark eNotjM1KxDAURiPoQsd5AkH6Aq25SdMky1IdHSk4MLoekvRGA21a0s6Ab-_v6jscDt8VOY9jREJugRYAVN9tm119vy-lklXBKOiCUgpwRtZaKpBMAROKwyV5rjszLeGE2eYY3RLGmLXmmz5CfM9q57DHZH51iNke0wlTj_OcNeMwHZefaNebxY9pmK_JhTf9jOv_XZG3zcNr85S3L4_bpm7zwChfcq6QYmk1g0pI0YEU3GtlwWvrtHPe8o6js74DV2rB0FeWsdIbr7QyvtN8RW7-fgMiHqYUBpM-D0pLoQTlX-iuTP0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPADS47876.2019.00011
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISBN 9781728125831
1728125839
EndPage 16
ExternalDocumentID 8975850
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-38e0e4b9216575d1753f98b1f9bc9ccfb3d3ecbfd1c4952ef6b224faf898afd93
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530854900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 10 07:40:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-38e0e4b9216575d1753f98b1f9bc9ccfb3d3ecbfd1c4952ef6b224faf898afd93
PageCount 8
ParticipantIDs ieee_primary_8975850
PublicationCentury 2000
PublicationDate 2019-Dec
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec
PublicationDecade 2010
PublicationTitle 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)
PublicationTitleAbbrev PADSW
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.3482075
Snippet Serverless computing has emerged as a new compelling paradigm for the deployment of applications and services, which enables developers to focus more on...
SourceID ieee
SourceType Publisher
StartPage 9
SubjectTerms Analytical models
Business
cloud computing
cold start
Computational modeling
Containers
function launching
Logic
Long short term memory
LSTM
Optimization
Predictive models
Serverless computing
Time series analysis
Title Adaptive Function Launching Acceleration in Serverless Computing Platforms
URI https://ieeexplore.ieee.org/document/8975850
WOSCitedRecordID wos000530854900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qEfHkoxXf7MGjsUm26e4eS7WoSAmo0FvZxywUJC1N6u93J6nVgxdvS7IhMAP7zezMNx_AjUmd4T5kqpjKLOoniY7MIMsiHSuRCeEwvKzFJsRkIqdTlbfgdsuFQcS6-QzvaFnX8t3CrumqrCcVRbchQd8RQjRcrQ3pN4lV72mUD-9fadgMtR4kNIcyJmGgX6opNWiMD_73u0Po_rDvWL7FlSNoYXEMe98d6h14Hjq9pFOKjQMokWHZiw4ruktiQ2sDkDRuZfOC0VmAVFAvWSPgQJvyD11RsFp24X388DZ6jDaSCNE8jXkVcYkx9o1KEyqYOBqz6ZU0iVfGKmu94Y6jNd4lNmQ-KfqBCRjttZdKau8UP4F2sSjwFJg14TseozAhpsKasKql5Upj8B5yPIMOmWS2bKZezDbWOP_78QXsk82bRo9LaFerNV7Brv2s5uXqunbVFx8AmK0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KFfXkoxXf7sGjsdls0uweS7W0WkvACr2VfcxCQdLSpv5-d5JaPXjxtiQbAjOw38zOfPMRcqcjq7nzmSpEIglixlSg20kSqFCmSZpa8C9LsYl0NBKTicxq5H7LhQGAsvkMHnBZ1vLt3KzxqqwlJEa3PkHfSeI4YhVba0P7ZaFsDbpZ5_ENx81g8wHDSZQhSgP90k0pYaN3-L8fHpHmD_-OZltkOSY1yE_I3nePeoM8d6xa4DlFex6W0LR0qPwKb5NoxxgPJZVj6SyneBoAltRXtJJwwE3ZhyowXF01yXvvadztBxtRhGAWhbwIuIAQYi0jhiUTi4M2nRSaOamNNMZpbjkY7SwzPveJwLW1R2mnnJBCOSv5Kann8xzOCDXaf8dDSLWPqqCkrCphuFTg_QcczkkDTTJdVHMvphtrXPz9-Jbs98evw-lwMHq5JAdo_6rt44rUi-Uarsmu-Sxmq-VN6bYvPHmb9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+25th+International+Conference+on+Parallel+and+Distributed+Systems+%28ICPADS%29&rft.atitle=Adaptive+Function+Launching+Acceleration+in+Serverless+Computing+Platforms&rft.au=Xu%2C+Zhengjun&rft.au=Zhang%2C+Haitao&rft.au=Geng%2C+Xin&rft.au=Wu%2C+Qiong&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1109%2FICPADS47876.2019.00011&rft.externalDocID=8975850