Segment, Magnify and Reiterate: Detecting Camouflaged Objects the Hard Way
It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection fashion, while neglecting small objects with low-resolution fine edges requires more operations than the larger ones. To tackle camouflaged obj...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4703 - 4712 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2022
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | It is challenging to accurately detect camouflaged objects from their highly similar surroundings. Existing methods mainly leverage a single-stage detection fashion, while neglecting small objects with low-resolution fine edges requires more operations than the larger ones. To tackle camouflaged object detection (COD), we are inspired by humans attention coupled with the coarse-to-fine detection strategy, and thereby propose an iterative refinement framework, coined SegMaR, which integrates Segment, Magnify and Reiterate in a multi-stage detection fashion. Specifically, we design a new discriminative mask which makes the model attend on the fixation and edge regions. In addition, we leverage an attention-based sampler to magnify the object region progressively with no need of enlarging the image size. Extensive experiments show our SegMaR achieves remarkable and consistent improvements over other state-of-the-art methods. Especially, we surpass two competitive methods 7.4% and 20.0% respectively in average over standard evaluation metrics on small camouflaged objects. Additional studies provide more promising insights into Seg-MaR, including its effectiveness on the discriminative mask and its generalization to other network architectures. Code is available at https://github.com/dlut-dimt/SegMaR. |
|---|---|
| ISSN: | 1063-6919 |
| DOI: | 10.1109/CVPR52688.2022.00467 |