Low-Complexity Massive MIMO Tensor Precoding

We present a novel and low-complexity massive multiple-input multiple-output (MIMO) precoding strategy based on novel findings concerning the subspace separability of Rician fading channels. Considering a uniform rectangular array at the base station, we show that the subspaces spanned by the channe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference record - Asilomar Conference on Signals, Systems, & Computers s. 348 - 355
Hlavní autoři: Ribeiro, Lucas N., Schwarz, Stefan, de Almeida, Andre L. F., Haardt, Martin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2020
Témata:
ISSN:2576-2303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a novel and low-complexity massive multiple-input multiple-output (MIMO) precoding strategy based on novel findings concerning the subspace separability of Rician fading channels. Considering a uniform rectangular array at the base station, we show that the subspaces spanned by the channel vectors can be factorized as a tensor product between two lower dimensional subspaces. Based on this result, we formulate tensor maximum ratio transmit and zero-forcing precoders. We show that the proposed tensor precoders exhibit lower computational complexity and require less instantaneous channel state information than their linear counterparts. Finally, we present computer simulations that demonstrate the applicability of the proposed tensor precoders in practical communication scenarios.
ISSN:2576-2303
DOI:10.1109/IEEECONF51394.2020.9443492