TOUCHDOWN: Natural Language Navigation and Spatial Reasoning in Visual Street Environments
We study the problem of jointly reasoning about language and vision through a navigation and spatial reasoning task. We introduce the Touchdown task and dataset, where an agent must first follow navigation instructions in a Street View environment to a goal position, and then guess a location in its...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 12530 - 12539 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2019
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study the problem of jointly reasoning about language and vision through a navigation and spatial reasoning task. We introduce the Touchdown task and dataset, where an agent must first follow navigation instructions in a Street View environment to a goal position, and then guess a location in its observed environment described in natural language to find a hidden object. The data contains 9326 examples of English instructions and spatial descriptions paired with demonstrations. We perform qualitative linguistic analysis, and show that the data displays a rich use of spatial reasoning. Empirical analysis shows the data presents an open challenge to existing methods. |
|---|---|
| ISSN: | 1063-6919 |
| DOI: | 10.1109/CVPR.2019.01282 |