An Innovative Approach Towards Violence Recognition Based on Deep Belief Network

This paper provides an informative overview about the structure, the operating principle, and the mathematical model of the Deep Belief Network (DBN) which is one of the best known and trusted deep learning models as well as a brief outline of the well-known and, likewise, the suggested pattern reco...

Full description

Saved in:
Bibliographic Details
Published in:International Conference on Control, Decision and Information Technologies (Online) Vol. 1; pp. 1297 - 1302
Main Authors: Lejmi, Wafa, Ben Khalifa, Anouar, Mahjoub, Mohamed Ali
Format: Conference Proceeding
Language:English
Published: IEEE 17.05.2022
Subjects:
ISSN:2576-3555
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper provides an informative overview about the structure, the operating principle, and the mathematical model of the Deep Belief Network (DBN) which is one of the best known and trusted deep learning models as well as a brief outline of the well-known and, likewise, the suggested pattern recognition applications that make wide use of this specific kind of neural network based on probability model. The application particularly targeted in this paper is the recognition of actions of violence. Hence, various experimentations have been conducted by varying several parameters using DeeBNet object-oriented MATLAB toolbox and the proposed approach returned an accuracy of 65.5 %.
AbstractList This paper provides an informative overview about the structure, the operating principle, and the mathematical model of the Deep Belief Network (DBN) which is one of the best known and trusted deep learning models as well as a brief outline of the well-known and, likewise, the suggested pattern recognition applications that make wide use of this specific kind of neural network based on probability model. The application particularly targeted in this paper is the recognition of actions of violence. Hence, various experimentations have been conducted by varying several parameters using DeeBNet object-oriented MATLAB toolbox and the proposed approach returned an accuracy of 65.5 %.
Author Mahjoub, Mohamed Ali
Lejmi, Wafa
Ben Khalifa, Anouar
Author_xml – sequence: 1
  givenname: Wafa
  surname: Lejmi
  fullname: Lejmi, Wafa
  email: wafa.lejmi@uc.rnu.tn
  organization: University of Sousse, ISITCom,LATIS - Laboratory of Advanced Technology and Intelligent Systems,Hammam Sousse,Tunisia,4011
– sequence: 2
  givenname: Anouar
  surname: Ben Khalifa
  fullname: Ben Khalifa, Anouar
  email: anouar.benkhalifa@eniso.u-sousse.tn
  organization: University of Sousse, Ecole Nationale d'Ingénieurs de Sousse,LATIS - Laboratory of Advanced Technology and Intelligent Systems,Sousse,Tunisia,4023
– sequence: 3
  givenname: Mohamed Ali
  surname: Mahjoub
  fullname: Mahjoub, Mohamed Ali
  organization: University of Sousse, Ecole Nationale d'Ingénieurs de Sousse,LATIS - Laboratory of Advanced Technology and Intelligent Systems,Sousse,Tunisia,4023
BookMark eNotkN9KwzAYxaMouM09gRfmBTq_JE3WXHabfwpDRap4N7Lki0ZnUtqy4dtbcFfncOB34JwxOYspIiHXDGaMgb5ZplVVS8kkm3HgfKYLEIUuTsiYKSVzrWD-fkpGXM5VJqSUF2TadV8AIJiGARiR5zLSKsa0N33YIy2bpk3GftI6HUzrOvoW0g6jRfqCNn3E0IcU6cJ06OhgVogNXeAuoKeP2B9S-31Jzr3ZdTg96oS83t3Wy4ds_XRfLct1FjiIPhOKo_HIt8YVWw25ZXxINDq2Be-1tMLyXKL2TuMwVXmbCw0ahEPrpAExIVf_vQERN00bfkz7uzkeIP4AB89S1w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT55151.2022.9803898
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 166549607X
9781665496070
EISSN 2576-3555
EndPage 1302
ExternalDocumentID 9803898
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-362eafe2bad8b904c1262e9ed1b0ff95c3c245e9fd9e1106fc4390903decd5a03
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846862800221&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:14:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-362eafe2bad8b904c1262e9ed1b0ff95c3c245e9fd9e1106fc4390903decd5a03
PageCount 6
ParticipantIDs ieee_primary_9803898
PublicationCentury 2000
PublicationDate 2022-May-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-17
  day: 17
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CODIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.7946174
Snippet This paper provides an informative overview about the structure, the operating principle, and the mathematical model of the Deep Belief Network (DBN) which is...
SourceID ieee
SourceType Publisher
StartPage 1297
SubjectTerms Classification
Contrastive Divergence
DBN
Deep
Deep learning
Hidden
Layer
Learning
Neural Network
Neural networks
Object oriented modeling
RBM
Target recognition
Training
Video sequences
Violence
Visible
Visualization
Title An Innovative Approach Towards Violence Recognition Based on Deep Belief Network
URI https://ieeexplore.ieee.org/document/9803898
Volume 1
WOSCitedRecordID wos000846862800221&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27bsIwFL0C1KETbaFq6UMeOjZgO3ESjzyKyoJQRSs2lNjXEkuCeH1_7WCoKnXpZlmyIl3bOcf3dQBeMmVZMIYqECiSwPJbFmRGxEGICUOao4mEqcQmkuk0XSzkrAav51oYRKySz7DrhlUsX5dq71xlPZm6dnBpHepJEh9rtc7-FHuUHB75FC5GZW9YjiZzSwiEewZy3vWrf8moVCgybv7v-1fQ_inHI7Mz0FxDDYsbaJ70GIi_ni2Y9Qsy8SqnByR93y6czKvU2C358iVG5OOUNVQWZGBhTBM7GCGuyQAtJzVkekwOb8Pn-G0-fA-8YkKw4jTcBRaNMDPI80ynuaSRYtzOSNQsp8ZIoULFI4HSaInWRrFRlo84T41GpUVGw1toFGWBd0CcFii1f0rD4zySoUyVi_gp-_rLFTOG3UPLGWi5PjbFWHrbdP6efoBLtwcu7M6SR2jsNnt8ggt12K22m-dqJ78BdS-fcg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKejT1E28mwcfzda0zdo87uLYcJYhVfY22vQE9tKO3X6_SZdNBF98C4FAOUn6fTm3D-A5kZoFoycpRx5QzW8ZTRRvUw8Dhk6KyueqFJsIoiicTsWkAi-HWhhELJPPsGmGZSw_K-TGuMpaIjTt4MIjODbKWbZa6-BR0YfJIJJN4mKOaPWK_ijWlICbh6DrNu36X0IqJY4Mav_7gnNo_BTkkckBai6ggvkl1PaKDMRe0DpMOjkZWZ3TLZKObRhO4jI5dkW-bJER-djnDRU56Wogy4ge9BEXpIualSoS7dLDG_A5eI17Q2o1E-jcdbw11XiEiUI3TbIwFY4vmatnBGYsdZQSXHrS9TkKlQnUNmorqRmJ8dVkKDOeON4VVPMix2sgRg3U0f9K5bZTX3gilCbmJ_X7L5VMKXYDdWOg2WLXFmNmbXP79_QTnA7j9_FsPIre7uDM7IcJwrPgHqrr5QYf4ERu1_PV8rHc1W_znqK7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=An+Innovative+Approach+Towards+Violence+Recognition+Based+on+Deep+Belief+Network&rft.au=Lejmi%2C+Wafa&rft.au=Ben+Khalifa%2C+Anouar&rft.au=Mahjoub%2C+Mohamed+Ali&rft.date=2022-05-17&rft.pub=IEEE&rft.eissn=2576-3555&rft.volume=1&rft.spage=1297&rft.epage=1302&rft_id=info:doi/10.1109%2FCoDIT55151.2022.9803898&rft.externalDocID=9803898