MCS-HMS: A Multi-Cluster Selection Strategy for the Human Mental Search Algorithm
Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent population-based metaheuristic that has been shown to work well in comparison to other algorithms. However, HMS is time-consuming and suffers from re...
Uložené v:
| Vydané v: | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
05.12.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent population-based metaheuristic that has been shown to work well in comparison to other algorithms. However, HMS is time-consuming and suffers from relatively poor exploration. Having clustered the candidate solutions, HMS selects a winner cluster with the best mean objective function. This is not necessarily the best criterion to choose the winner group and limits the exploration ability of the algorithm. In this paper, we propose an improvement to the HMS algorithm in which the best bids from multiple clusters are used to benefit from enhanced exploration. We also use a one-step k-means algorithm in the clustering phase to improve the speed of the algorithm. Our experimental results show that MCS-HMS outperforms HMS as well as other population-based metaheuristic algorithms. |
|---|---|
| AbstractList | Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent population-based metaheuristic that has been shown to work well in comparison to other algorithms. However, HMS is time-consuming and suffers from relatively poor exploration. Having clustered the candidate solutions, HMS selects a winner cluster with the best mean objective function. This is not necessarily the best criterion to choose the winner group and limits the exploration ability of the algorithm. In this paper, we propose an improvement to the HMS algorithm in which the best bids from multiple clusters are used to benefit from enhanced exploration. We also use a one-step k-means algorithm in the clustering phase to improve the speed of the algorithm. Our experimental results show that MCS-HMS outperforms HMS as well as other population-based metaheuristic algorithms. |
| Author | Bojnordi, Ehsan Schaefer, Gerald Mousavirad, Seyed Jalaleddin Korovin, Iakov |
| Author_xml | – sequence: 1 givenname: Ehsan surname: Bojnordi fullname: Bojnordi, Ehsan organization: Iranian National Tax Administration,Information Technology Department,Bojnord,Iran – sequence: 2 givenname: Seyed Jalaleddin surname: Mousavirad fullname: Mousavirad, Seyed Jalaleddin organization: Hakim Sabzevari University,Computer Engineering Department,Sabzevar,Iran – sequence: 3 givenname: Gerald surname: Schaefer fullname: Schaefer, Gerald organization: Loughborough University,Department of Computer Science,Loughborough,U.K – sequence: 4 givenname: Iakov surname: Korovin fullname: Korovin, Iakov organization: Southern Federal University,Taganrog,Russia |
| BookMark | eNotj81KAzEURiPoQmufQJC8wIy5SaZN3A2DOoUOItF1CclNJzA_kmYWfXsLdvVtDofzPZDbaZ6QkGdgJQDTL8Y0u4rJCkrOOJR6s2EgxQ1Z662CLVegmVTqnnx1jSnazrzSmnbLkGPRDMspY6IGB3Q5zhM1OdmMxzMNc6K5R9ouo51oh1O2w4WzyfW0Ho5zirkfH8ldsMMJ19ddkZ_3t--mLfafH7um3heRM5ELIZz2DpFz6RW6ELQFpbQPSkgE55UA7yuASgUJ_FKNEjRK5qz1IKwWK_L0742IePhNcbTpfLgeFX-8HUzA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SSCI50451.2021.9660143 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728190488 1728190487 |
| EndPage | 6 |
| ExternalDocumentID | 9660143 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-33c9dcee224d8ecff9a1889df834e1cd831dd51158f412978e419e40caad13a93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824464300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:51 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-33c9dcee224d8ecff9a1889df834e1cd831dd51158f412978e419e40caad13a93 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9660143 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) |
| PublicationTitleAbbrev | SSCI |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8132588 |
| Snippet | Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | clustering Clustering algorithms Computational intelligence Global optimisation Human Mental Search Linear programming metaheuristic algorithms Metaheuristics |
| Title | MCS-HMS: A Multi-Cluster Selection Strategy for the Human Mental Search Algorithm |
| URI | https://ieeexplore.ieee.org/document/9660143 |
| WOSCitedRecordID | wos000824464300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycGjaZNNtpt4K4tFwZbKqvRWQjLRQm2lbgX_vUl2qQhevIUQGJgQ3sxk3huELoVRHiYsJ0C1JsICEB-FJ8S5vks1gJFRp_v5PhuP5XSqJg10teXCAEBsPoNuWMa_fLsym1Aq6wUlSY_vTdTMsn7F1apJv4yqXlHkd2mQS_FZX8K69eFfU1MiaAz3_mduH3V-2Hd4ssWVA9SAZRs9jPKC3I6KazzAkTRL8sUmiBzgIk6y8e7FtdLsF_aBKPaBHY4VelzJ9OCqsRgPFi-r9bx8feugp-HNY35L6nEIZJ5QXhLOjbLetgddK8E4pzSTUlknuQBmrOTMWh8_pdIJj-KZBMEUCGq0toxrxQ9Ra7lawhHCmmYg-4ZTn1d7QPJvVBjLMqaTVCdUJ8eoHdwxe68UL2a1J07-3j5Fu8HjsckjPUOtcr2Bc7RjPsv5x_oiXtM3uR6U0g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21CnpSacVvc_Bo2mST7SbeymJpsS2VrdJbCcmsLdRW6lbw35vNLhXBi7cQAgMTwpuZzHuD0K0wysGE5QSo1kRYAOKi8ICkaSsNNYCRXqf7pR8Nh3IyUaMKuttyYQDAN59BI1_6v3y7Mpu8VNbMlSQdvu-g3VCIgBZsrZL2y6hqJkncC3PBFJf3BaxRHv81N8XDRufwfwaPUP2Hf4dHW2Q5RhVY1tDTIE5Id5Dc4zb2tFkSLza5zAFO_Cwb52Bcas1-YReKYhfaYV-jx4VQDy5ai3F78bpaz7PZWx09dx7GcZeUAxHIPKA8I5wbZZ1tB7tWgklTpZmUyqaSC2DGSs6sdRFUKFPhcDySIJgCQY3WlnGt-AmqLldLOEVY0whky3DqMmsHSe6VCmNZxHQQ6oDq4AzVcndM3wvNi2npifO_t2_Qfnc86E_7veHjBTrIve9bPsJLVM3WG7hCe-Yzm3-sr_2VfQOoiZgZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=MCS-HMS%3A+A+Multi-Cluster+Selection+Strategy+for+the+Human+Mental+Search+Algorithm&rft.au=Bojnordi%2C+Ehsan&rft.au=Mousavirad%2C+Seyed+Jalaleddin&rft.au=Schaefer%2C+Gerald&rft.au=Korovin%2C+Iakov&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSSCI50451.2021.9660143&rft.externalDocID=9660143 |