MCS-HMS: A Multi-Cluster Selection Strategy for the Human Mental Search Algorithm

Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent population-based metaheuristic that has been shown to work well in comparison to other algorithms. However, HMS is time-consuming and suffers from re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 IEEE Symposium Series on Computational Intelligence (SSCI) s. 1 - 6
Hlavní autori: Bojnordi, Ehsan, Mousavirad, Seyed Jalaleddin, Schaefer, Gerald, Korovin, Iakov
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 05.12.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent population-based metaheuristic that has been shown to work well in comparison to other algorithms. However, HMS is time-consuming and suffers from relatively poor exploration. Having clustered the candidate solutions, HMS selects a winner cluster with the best mean objective function. This is not necessarily the best criterion to choose the winner group and limits the exploration ability of the algorithm. In this paper, we propose an improvement to the HMS algorithm in which the best bids from multiple clusters are used to benefit from enhanced exploration. We also use a one-step k-means algorithm in the clustering phase to improve the speed of the algorithm. Our experimental results show that MCS-HMS outperforms HMS as well as other population-based metaheuristic algorithms.
AbstractList Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent population-based metaheuristic that has been shown to work well in comparison to other algorithms. However, HMS is time-consuming and suffers from relatively poor exploration. Having clustered the candidate solutions, HMS selects a winner cluster with the best mean objective function. This is not necessarily the best criterion to choose the winner group and limits the exploration ability of the algorithm. In this paper, we propose an improvement to the HMS algorithm in which the best bids from multiple clusters are used to benefit from enhanced exploration. We also use a one-step k-means algorithm in the clustering phase to improve the speed of the algorithm. Our experimental results show that MCS-HMS outperforms HMS as well as other population-based metaheuristic algorithms.
Author Bojnordi, Ehsan
Schaefer, Gerald
Mousavirad, Seyed Jalaleddin
Korovin, Iakov
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Bojnordi
  fullname: Bojnordi, Ehsan
  organization: Iranian National Tax Administration,Information Technology Department,Bojnord,Iran
– sequence: 2
  givenname: Seyed Jalaleddin
  surname: Mousavirad
  fullname: Mousavirad, Seyed Jalaleddin
  organization: Hakim Sabzevari University,Computer Engineering Department,Sabzevar,Iran
– sequence: 3
  givenname: Gerald
  surname: Schaefer
  fullname: Schaefer, Gerald
  organization: Loughborough University,Department of Computer Science,Loughborough,U.K
– sequence: 4
  givenname: Iakov
  surname: Korovin
  fullname: Korovin, Iakov
  organization: Southern Federal University,Taganrog,Russia
BookMark eNotj81KAzEURiPoQmufQJC8wIy5SaZN3A2DOoUOItF1CclNJzA_kmYWfXsLdvVtDofzPZDbaZ6QkGdgJQDTL8Y0u4rJCkrOOJR6s2EgxQ1Z662CLVegmVTqnnx1jSnazrzSmnbLkGPRDMspY6IGB3Q5zhM1OdmMxzMNc6K5R9ouo51oh1O2w4WzyfW0Ho5zirkfH8ldsMMJ19ddkZ_3t--mLfafH7um3heRM5ELIZz2DpFz6RW6ELQFpbQPSkgE55UA7yuASgUJ_FKNEjRK5qz1IKwWK_L0742IePhNcbTpfLgeFX-8HUzA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI50451.2021.9660143
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728190488
1728190487
EndPage 6
ExternalDocumentID 9660143
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-33c9dcee224d8ecff9a1889df834e1cd831dd51158f412978e419e40caad13a93
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824464300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:51 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-33c9dcee224d8ecff9a1889df834e1cd831dd51158f412978e419e40caad13a93
PageCount 6
ParticipantIDs ieee_primary_9660143
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8132588
Snippet Population-based metaheuristic algorithms have received significant attention in global optimisation. Human Mental Search (HMS) is a relatively recent...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms clustering
Clustering algorithms
Computational intelligence
Global optimisation
Human Mental Search
Linear programming
metaheuristic algorithms
Metaheuristics
Title MCS-HMS: A Multi-Cluster Selection Strategy for the Human Mental Search Algorithm
URI https://ieeexplore.ieee.org/document/9660143
WOSCitedRecordID wos000824464300320&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycGjaZNNtpt4K4tFwZbKqvRWQjLRQm2lbgX_vUl2qQhevIUQGJgQ3sxk3huELoVRHiYsJ0C1JsICEB-FJ8S5vks1gJFRp_v5PhuP5XSqJg10teXCAEBsPoNuWMa_fLsym1Aq6wUlSY_vTdTMsn7F1apJv4yqXlHkd2mQS_FZX8K69eFfU1MiaAz3_mduH3V-2Hd4ssWVA9SAZRs9jPKC3I6KazzAkTRL8sUmiBzgIk6y8e7FtdLsF_aBKPaBHY4VelzJ9OCqsRgPFi-r9bx8feugp-HNY35L6nEIZJ5QXhLOjbLetgddK8E4pzSTUlknuQBmrOTMWh8_pdIJj-KZBMEUCGq0toxrxQ9Ra7lawhHCmmYg-4ZTn1d7QPJvVBjLMqaTVCdUJ8eoHdwxe68UL2a1J07-3j5Fu8HjsckjPUOtcr2Bc7RjPsv5x_oiXtM3uR6U0g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21CnpSacVvc_Bo2mST7SbeymJpsS2VrdJbCcmsLdRW6lbw35vNLhXBi7cQAgMTwpuZzHuD0K0wysGE5QSo1kRYAOKi8ICkaSsNNYCRXqf7pR8Nh3IyUaMKuttyYQDAN59BI1_6v3y7Mpu8VNbMlSQdvu-g3VCIgBZsrZL2y6hqJkncC3PBFJf3BaxRHv81N8XDRufwfwaPUP2Hf4dHW2Q5RhVY1tDTIE5Id5Dc4zb2tFkSLza5zAFO_Cwb52Bcas1-YReKYhfaYV-jx4VQDy5ai3F78bpaz7PZWx09dx7GcZeUAxHIPKA8I5wbZZ1tB7tWgklTpZmUyqaSC2DGSs6sdRFUKFPhcDySIJgCQY3WlnGt-AmqLldLOEVY0whky3DqMmsHSe6VCmNZxHQQ6oDq4AzVcndM3wvNi2npifO_t2_Qfnc86E_7veHjBTrIve9bPsJLVM3WG7hCe-Yzm3-sr_2VfQOoiZgZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=MCS-HMS%3A+A+Multi-Cluster+Selection+Strategy+for+the+Human+Mental+Search+Algorithm&rft.au=Bojnordi%2C+Ehsan&rft.au=Mousavirad%2C+Seyed+Jalaleddin&rft.au=Schaefer%2C+Gerald&rft.au=Korovin%2C+Iakov&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSSCI50451.2021.9660143&rft.externalDocID=9660143