Gradual Surrogate Gradient Learning in Deep Spiking Neural Networks

Spiking Neural Network (SNN) is a promising solution for ultra-low-power hardware. Recent SNNs have reached the performance of Deep Neural Networks (DNNs) in dealing with many tasks. However, these methods often suffer from a long simulation time to achieve the accurate spike train information. In a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) S. 8927 - 8931
Hauptverfasser: Chen, Yi, Zhang, Silin, Ren, Shiyu, Qu, Hong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.05.2022
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spiking Neural Network (SNN) is a promising solution for ultra-low-power hardware. Recent SNNs have reached the performance of Deep Neural Networks (DNNs) in dealing with many tasks. However, these methods often suffer from a long simulation time to achieve the accurate spike train information. In addition, these methods are contingent on a well-designed initialization to effectively transmit the gradient information. To address these issues, we propose the Internal Spiking Neuron Model (ISNM), which uses the synaptic current instead of spike trains as the carrier of information. In addition, we design a gradual surrogate gradient learning algorithm to ensure that SNNs effectively back-propagate gradient information in the early stage of training and more accurate gradient information in the later stage of training. The experiments on various network structures on CIFAR-10 and CIFAR-100 datasets show that the proposed method can exceed the performance of previous SNN methods within 5 time steps.
ISSN:2379-190X
DOI:10.1109/ICASSP43922.2022.9746774