Colorectal Cancer Tissue Classification Using Semi-Supervised Hypergraph Convolutional Network

Colorectal Cancer (CRC) is a leading cause of death around the globe, and therefore, the analysis of tumor micro environment in the CRC WSIs is important for the early detection of CRC. Conventional visual inspection is very time consuming and the process can undergo inaccuracies because of the subj...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Symposium on Biomedical Imaging) s. 1306 - 1309
Hlavní autoři: Bakht, Ahsan Baidar, Javed, Sajid, AlMarzouqi, Hasan, Khandoker, Ahsan, Werghi, Naoufel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 13.04.2021
Témata:
ISSN:1945-8452
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Colorectal Cancer (CRC) is a leading cause of death around the globe, and therefore, the analysis of tumor micro environment in the CRC WSIs is important for the early detection of CRC. Conventional visual inspection is very time consuming and the process can undergo inaccuracies because of the subject-level assessment. Deep learning has shown promising results in medical image analysis. However, these approaches require a lot of labeling images from medical experts. In this paper, we propose a semi-supervised algorithm for CRC tissue classification. We propose to employ the hypergraph neural network to classify seven different biologically meaningful CRC tissue types. Firstly, image deep features are extracted from input patches using the pre-trained VGG19 model. The hypergraph is then constructed whereby patch-level deep features represent the vertices of hypergraph and hyperedges are assigned using pair-wise euclidean distance. The edges, vertices, and their corresponding patch-level features are passed through a feed-forward neural network to perform tissue classification in a transductive manner. Experiments are performed on an independent CRC tissue classification dataset and compared with existing state-of-the-art methods. Our results reveal that the proposed algorithm outperforms existing methods by achieving an overall accuracy of 95.46% and AvTP of 94.42%.
AbstractList Colorectal Cancer (CRC) is a leading cause of death around the globe, and therefore, the analysis of tumor micro environment in the CRC WSIs is important for the early detection of CRC. Conventional visual inspection is very time consuming and the process can undergo inaccuracies because of the subject-level assessment. Deep learning has shown promising results in medical image analysis. However, these approaches require a lot of labeling images from medical experts. In this paper, we propose a semi-supervised algorithm for CRC tissue classification. We propose to employ the hypergraph neural network to classify seven different biologically meaningful CRC tissue types. Firstly, image deep features are extracted from input patches using the pre-trained VGG19 model. The hypergraph is then constructed whereby patch-level deep features represent the vertices of hypergraph and hyperedges are assigned using pair-wise euclidean distance. The edges, vertices, and their corresponding patch-level features are passed through a feed-forward neural network to perform tissue classification in a transductive manner. Experiments are performed on an independent CRC tissue classification dataset and compared with existing state-of-the-art methods. Our results reveal that the proposed algorithm outperforms existing methods by achieving an overall accuracy of 95.46% and AvTP of 94.42%.
Author Javed, Sajid
Bakht, Ahsan Baidar
AlMarzouqi, Hasan
Khandoker, Ahsan
Werghi, Naoufel
Author_xml – sequence: 1
  givenname: Ahsan Baidar
  surname: Bakht
  fullname: Bakht, Ahsan Baidar
  organization: Khalifa University,UAE
– sequence: 2
  givenname: Sajid
  surname: Javed
  fullname: Javed, Sajid
  organization: Khalifa University,UAE
– sequence: 3
  givenname: Hasan
  surname: AlMarzouqi
  fullname: AlMarzouqi, Hasan
  organization: Khalifa University,UAE
– sequence: 4
  givenname: Ahsan
  surname: Khandoker
  fullname: Khandoker, Ahsan
  organization: Khalifa University,UAE
– sequence: 5
  givenname: Naoufel
  surname: Werghi
  fullname: Werghi, Naoufel
  organization: Khalifa University,UAE
BookMark eNotUFFLwzAYjKLgNvcLBMkf6MyXfG3TRy3qBkMfOl8dsfk6o10zkm6yf2_FHQd3cMc93JhddL4jxm5BzABEcbeoHhaoJcBMCgmzAhUKlZ2xMWRZiiAxg3M2ggLTRGMqr9g0xi8xIEdUAkfsvfStD1T3puWl6WoKfOVi3BMvWxOja1xteuc7_hZdt-EVbV1S7XcUDi6S5fPjYDfB7D556buDb_d_5WHrhfofH76v2WVj2kjTk07Y6ulxVc6T5evzorxfJk4K1ScKUkkm13mOmtBIa5SlgTQYzAktSCsVfGjTpMJik1lZD5ktchKp1mrCbv5nHRGtd8FtTTiuT2-oXzTDWJM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI48211.2021.9434036
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665412461
9781665412469
EISSN 1945-8452
EndPage 1309
ExternalDocumentID 9434036
Genre orig-research
GrantInformation_xml – fundername: Terry Fox Foundation
  funderid: 10.13039/501100002655
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-3152ea787748e4a2da3de3deeda347e4d12d231b8af50d4f6d2cedad97e05883
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786144100272&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:27:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-3152ea787748e4a2da3de3deeda347e4d12d231b8af50d4f6d2cedad97e05883
PageCount 4
ParticipantIDs ieee_primary_9434036
PublicationCentury 2000
PublicationDate 2021-April-13
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-April-13
  day: 13
PublicationDecade 2020
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.233275
Snippet Colorectal Cancer (CRC) is a leading cause of death around the globe, and therefore, the analysis of tumor micro environment in the CRC WSIs is important for...
SourceID ieee
SourceType Publisher
StartPage 1306
SubjectTerms Classification algorithms
Colorectal Cancer (CRC)
Deep Learning
Feature extraction
Hypergraph Neural Network
Image edge detection
Inspection
Labeling
Neural networks
Tissue Classification
Visualization
Title Colorectal Cancer Tissue Classification Using Semi-Supervised Hypergraph Convolutional Network
URI https://ieeexplore.ieee.org/document/9434036
WOSCitedRecordID wos000786144100272&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UemgvfWjpmxx67OpmN5tsrpWKXkTQg6dKdjMLQquyrv7-TuJiW-ilkENISAIzyUy-ZB4Az1mWa1VwEWgrMwIomgfGFiYo4phLrZJcaeuTTajxOJ3P9aQBL0dfGET0xmfYdVX_l2_X-c49lfVcLDOSuE1oKiUPvlrH9xRShYKgee0EzEPdG01fRyIlgEMoMOLdevCvLCpeiQzO_7f8BXS-vfHY5KhnLqGBqys4-xFIsA3vhP_XTnaZD9Z3fCzZzFOU-aSXzhzIc4B5CwE2xc9lMN1tnJzYomVDAqOlD13NaM19vRtprvHBSLwDs8HbrD8M6swJwTIK44oEaxKhobOoRIrCRNbEFqkgVYRCYXlk6WKXpaZIQisKaaOc-qxWGCZpGl9Da7Ve4Q2wzGCRI0eeZijodBu6z6CycSGkJDQkb6HtCLXYHGJjLGoa3f3dfA-njhfuN4bHD9Cqyh0-wkm-r5bb8skz9AsUnqRh
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQsPArijQdG0saJE8crFVUrSlSpHTpROfFF6kBbpY_fz9mNCkgsSBmsRH7oLr67z74HwFOW5UoWXHjKxBkBFMU9bQrtFWHIYyWjXCrjik3INE3GYzWowfMuFgYRnfMZNm3T3eWbeb62R2Utm8uMJO4e7EdCBP42Wmt3okLKUBA4r8KAua9aveFLTyQEcQgHBrxZdf9VR8Wpkc7J_xZwChff8XhssNM0Z1DD2Tkc_0gl2ICP9tyOlpMtzdqWkyUbOZoyV_bSOgQ5HjDnI8CG-Dn1huuFlRRLNKxLcLR0yasZzbmp_kcaK926iV_AqPM6ane9qnaCNw38cEWiNQpQ026UIkGhA6NDg_QgNYREYXhgyLTLEl1EvhFFbIKcvhkl0Y-SJLyE-mw-wytgmcYiR448yVDQ_tZk0aA0YSHimPBQfA0NS6jJYpsdY1LR6Obv149w2B299yf9Xvp2C0eWL_Zuhod3UF-Va7yHg3yzmi7LB8fcL81Hp6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Colorectal+Cancer+Tissue+Classification+Using+Semi-Supervised+Hypergraph+Convolutional+Network&rft.au=Bakht%2C+Ahsan+Baidar&rft.au=Javed%2C+Sajid&rft.au=AlMarzouqi%2C+Hasan&rft.au=Khandoker%2C+Ahsan&rft.date=2021-04-13&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1306&rft.epage=1309&rft_id=info:doi/10.1109%2FISBI48211.2021.9434036&rft.externalDocID=9434036