HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs
Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient general...
Uložené v:
| Vydané v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 7733 - 7743 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2022
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. |
|---|---|
| AbstractList | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. |
| Author | Zhang, Jiakai Yu, Jingyi Zhang, Yingliang Lin, Pei Zhao, Fuqiang Yang, Wei Xu, Lan |
| Author_xml | – sequence: 1 givenname: Fuqiang surname: Zhao fullname: Zhao, Fuqiang organization: ShanghaiTech University – sequence: 2 givenname: Wei surname: Yang fullname: Yang, Wei organization: Huazhong University of Science and Technology – sequence: 3 givenname: Jiakai surname: Zhang fullname: Zhang, Jiakai organization: ShanghaiTech University – sequence: 4 givenname: Pei surname: Lin fullname: Lin, Pei organization: ShanghaiTech University – sequence: 5 givenname: Yingliang surname: Zhang fullname: Zhang, Yingliang organization: DGene – sequence: 6 givenname: Jingyi surname: Yu fullname: Yu, Jingyi organization: ShanghaiTech University – sequence: 7 givenname: Lan surname: Xu fullname: Xu, Lan organization: ShanghaiTech University |
| BookMark | eNotjktOwzAUAA0Cibb0BLDwBRLesx1_2KGobSpVgMpnWznJs2TUulGSLnp7ELCazWg0U3aVjokYu0fIEcE9lJ-v20Joa3MBQuQApnAXbIpaF0o7peUlmyBomWmH7obNh-ELAKRA1M5OWFWdDj4903b5yBchxCZSGvdnvqJEvR-p5b8C3_o2-tQQX0batzz0xwN_63w_EF-n7jQOt-w6-P1A83_O2Mdy8V5W2eZltS6fNlkUIMdMgpGkjfLQkDV1gYRGS9XallSNZLxvm9r9_EItUIFRWoSggq6pCMFZL2fs7q8biWjX9fHg-_POWQsISn4DsGpOLQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.00759 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 7743 |
| ExternalDocumentID | 9880104 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2018YFB2100500 funderid: 10.13039/501100012166 – fundername: STCSM grantid: 2015F0203-000-06 funderid: 10.13039/501100003399 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870759100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9880104 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.5801084 |
| Snippet | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7733 |
| SubjectTerms | Cameras Computer vision Dynamics Entertainment industry Image and video synthesis and generation; 3D from multi-view and sensors; Face and gestures; Motion and tracking; Pose estimation and tracking Rendering (computer graphics) Telepresence Training |
| Title | HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs |
| URI | https://ieeexplore.ieee.org/document/9880104 |
| WOSCitedRecordID | wos000870759100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDHB48Td3E3-Tg0bq2SZPG61iZIGPMH-w2kuYVBtKNtRP8781Ly_TgxVtpyyu8_kjet-_7CSF3ghkwFsJAaV0EXHMINGrwwvBc4cFceqPws5xO08VCzTrkfu-FAQDffAYPuOn_5dt1vkOpbKjcwxYh_PNAStF4tfZ6CnOVjFBp646LQjUcvc_mCDPBBq4YsZwSgaS_1lDxQ0jW-9_Fj8ngx4tHZ_tR5oR0oDwlvXbySNtXs-qTiZfjpzDPHunYcyFcuI8v2nCl3byS-hPo3MMIXNAMe9co2kvoy8aVt0Cfys2urgbkLRu_jiZBu0xCsIpDVqN6xEBIrsMcUmmSCCL30eA2tcBNBFJrmxuFbC0Tu3JKchEXBS-EgaQoVKrZGemW6xLOCQVrcqsYiwqsE0OmWWwTq7QBnbgw8oL0MTHLTUPCWLY5ufx79xU5wsw3jVXXpFtvd3BDDvPPelVtb_3t-wYvH5yu |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDUEFPUzfxtzl4tK5t0qbxOjY2nGXMKbuNpHmFgXRj6wT_e_PSMj148Vba8gpJ2-R9876fEHIfMw3agO9JpXKPKw6eQg0-1jyTeDETzig8EmmazGZy3CAPOy8MALjiM3jEQ7eWb5bZFqWyjrQvW4Dwz_2I89Cv3Fo7RYXZXCaWSe2PC3zZ6b6PJ4gzwRKuEMGcApGkv3ZRcYNIv_m_xx-T9o8bj45348wJaUBxSpr19JHWH-emRQZOkE9h0n-iPUeGsOE-vmhFlrYzS-puoBOHI7BB-1i9RtFgQl9XNsEFOixW23LTJm_93rQ78OqNErxF6LMS9SMGseDKzyAROgogsL8NbhIDXAcglDKZlkjX0qFNqASPwzzneawhynOZKHZG9oplAeeEgtGZkYwFOWaKPlMsNJGRSoOKbBhxQVrYMPNVxcKY121y-ffpO3I4mL6M5qNh-nxFjrAXqjKra7JXrrdwQw6yz3KxWd-6rvwGhjKf9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HumanNeRF%3A+Efficiently+Generated+Human+Radiance+Field+from+Sparse+Inputs&rft.au=Zhao%2C+Fuqiang&rft.au=Yang%2C+Wei&rft.au=Zhang%2C+Jiakai&rft.au=Lin%2C+Pei&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7733&rft.epage=7743&rft_id=info:doi/10.1109%2FCVPR52688.2022.00759&rft.externalDocID=9880104 |