DUAL: Acceleration of Clustering Algorithms using Digital-based Processing In-Memory

Today's applications generate a large amount of data that need to be processed by learning algorithms. In practice, the majority of the data are not associated with any labels. Unsupervised learning, i.e., clustering methods, are the most commonly used algorithms for data analysis. However, run...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) s. 356 - 371
Hlavní autoři: Imani, Mohsen, Pampana, Saikishan, Gupta, Saransh, Zhou, Minxuan, Kim, Yeseong, Rosing, Tajana
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Today's applications generate a large amount of data that need to be processed by learning algorithms. In practice, the majority of the data are not associated with any labels. Unsupervised learning, i.e., clustering methods, are the most commonly used algorithms for data analysis. However, running clustering algorithms on traditional cores results in high energy consumption and slow processing speed due to a large amount of data movement between memory and processing units. In this paper, we propose DUAL, a Digital-based Unsupervised learning AcceLeration, which supports a wide range of popular algorithms on conventional crossbar memory. Instead of working with the original data, DUAL maps all data points into high-dimensional space, replacing complex clustering operations with memory-friendly operations. We accordingly design a PIM-based architecture that supports all essential operations in a highly parallel and scalable way. DUAL supports a wide range of essential operations and enables in-place computations, allowing data points to remain in memory. We have evaluated DUAL on several popular clustering algorithms for a wide range of large-scale datasets. Our evaluation shows that DUAL provides a comparable quality to existing clustering algorithms while using a binary representation and a simplified distance metric. DUAL also provides 58.8× speedup and 251.2× energy efficiency improvement as compared to the state-of-the-art solution running on GPU.
AbstractList Today's applications generate a large amount of data that need to be processed by learning algorithms. In practice, the majority of the data are not associated with any labels. Unsupervised learning, i.e., clustering methods, are the most commonly used algorithms for data analysis. However, running clustering algorithms on traditional cores results in high energy consumption and slow processing speed due to a large amount of data movement between memory and processing units. In this paper, we propose DUAL, a Digital-based Unsupervised learning AcceLeration, which supports a wide range of popular algorithms on conventional crossbar memory. Instead of working with the original data, DUAL maps all data points into high-dimensional space, replacing complex clustering operations with memory-friendly operations. We accordingly design a PIM-based architecture that supports all essential operations in a highly parallel and scalable way. DUAL supports a wide range of essential operations and enables in-place computations, allowing data points to remain in memory. We have evaluated DUAL on several popular clustering algorithms for a wide range of large-scale datasets. Our evaluation shows that DUAL provides a comparable quality to existing clustering algorithms while using a binary representation and a simplified distance metric. DUAL also provides 58.8× speedup and 251.2× energy efficiency improvement as compared to the state-of-the-art solution running on GPU.
Author Rosing, Tajana
Gupta, Saransh
Kim, Yeseong
Pampana, Saikishan
Zhou, Minxuan
Imani, Mohsen
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Imani
  fullname: Imani, Mohsen
  email: m.imani@uci.edu
  organization: UC,Department of Computer Science,Irvine
– sequence: 2
  givenname: Saikishan
  surname: Pampana
  fullname: Pampana, Saikishan
  email: yeseongkim@dgist.ac.kr
  organization: UC,Department of Computer Science and Engineering,San Diego
– sequence: 3
  givenname: Saransh
  surname: Gupta
  fullname: Gupta, Saransh
  email: sgupta@ucsd.edu
  organization: UC,Department of Computer Science and Engineering,San Diego
– sequence: 4
  givenname: Minxuan
  surname: Zhou
  fullname: Zhou, Minxuan
  email: spampana@ucsd.edu
  organization: UC,Department of Computer Science and Engineering,San Diego
– sequence: 5
  givenname: Yeseong
  surname: Kim
  fullname: Kim, Yeseong
  email: miz087@ucsd.edu
  organization: DGIST,Department of Information and Communication Engineering
– sequence: 6
  givenname: Tajana
  surname: Rosing
  fullname: Rosing, Tajana
  email: tajana@ucsd.edu
  organization: UC,Department of Computer Science and Engineering,San Diego
BookMark eNotjF1LwzAYRiPohc79AhHyB1qTN027eFc6nYWOiWzXI0nf1kDbSNJd7N87Py4OB84Dzx25nvyEhDxylnLO1NO2rj52kkGep8CApYwxoa7IUhUrXsAFsRJwS_brQ9k809JaHDDo2fmJ-o5WwynOGNzU03LofXDz5xjpKf6EtevdrIfE6IgtfQ_eYvwd6inZ4ujD-Z7cdHqIuPz3ghxeX_bVW9LsNnVVNokDJuYEOmTcoFSdAKURcsMvNjKTOuPSGtBYZMbmXastoLKCGaagBSMQs9xYsSAPf78OEY9fwY06nI8KJFdZJr4BcHFPSw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MICRO50266.2020.00039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728173832
1728173833
EndPage 371
ExternalDocumentID 9251944
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-2fe01be59f329ae26b129ab545a415cb2ae74bc6fdac2e9c30b092d2b3ee46bc3
IEDL.DBID RIE
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792639000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:55 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2fe01be59f329ae26b129ab545a415cb2ae74bc6fdac2e9c30b092d2b3ee46bc3
PageCount 16
ParticipantIDs ieee_primary_9251944
PublicationCentury 2000
PublicationDate 2020-Oct.
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationTitle 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
PublicationTitleAbbrev MICRO
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.4254274
Snippet Today's applications generate a large amount of data that need to be processed by learning algorithms. In practice, the majority of the data are not associated...
SourceID ieee
SourceType Publisher
StartPage 356
SubjectTerms Algorithm-hardware co-design
Hyperdimensional computing
Processing in-memory
Unsupervised learning
Title DUAL: Acceleration of Clustering Algorithms using Digital-based Processing In-Memory
URI https://ieeexplore.ieee.org/document/9251944
WOSCitedRecordID wos000792639000026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhGCRt48GTmtb4DgePYllYluKtaW000dqYNumtAfajNqm7pg8T_72wu6kevHiCAAHycRgeMwxC10akmgrLiZOak9jaiGhDHZGpEAacT5QtzCbkcNiZTtWohm52WhgAKMhncBuyxVt-mtttuCprqyCzjOM6qkuZlFqtSpQTUdX20359Ef5MEZgHLDC2aLAA_2WaUmDG4OB_ox2i1o_4Do92sHKEapA10bg_6T7d4a61HibKRcO5w73lNnx04Nvh7nKe-4P-2_saBy77HPcX82AIQgJOpbgSBISKx4w8B37tVwtNBvfj3gOpDBHIglG-IcwBjQwI5ThTGlhiPFpr4zdB2uOwNUyDjI1NXKotA2U5NVSxlBkOECfG8mPUyPIMThDmRvuNnlCJYCrWttNxzvjeeQRUgZXsFDVDRGYf5Z8XsyoYZ38Xn6P9EPKS5HaBGpvVFi7Rnv3cLNarq2KhvgGPeZg0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhGCS1muhJTWt8y8GjWArLbvHWtJo2trUxbdJbA-xHbVJ3TR8m_nthd1M9ePEEAQLk4zA8ZhiEbrWIFRWGExspTgJj6kRpakkUC6HBukSazGwiGgwak4kcltDdVgsDABn5DO59NnvLj1Oz8VdlNelllkGwg3ZFEDCaq7UKWU6dypqb-OuLcKcKzz1gnrNFvQn4L9uUDDWeDv833hGq_sjv8HALLMeoBEkFjdrjZu8BN41xQJEvG04tbi02_qsD1w43F7PUHfXf3lfYs9lnuD2feUsQ4pEqxoUkwFd0E9L3DNuvKho_PY5aHVJYIpA5o3xNmAVa1yCk5UwqYKF2eK202wYph8RGMwVRoE1oY2UYSMOpppLFTHOAINSGn6BykiZwijDXym31hAwFk4EyjYa12vXO60AlmIidoYqPyPQj__ViWgTj_O_iG7TfGfV701538HyBDnz4c8rbJSqvlxu4Qnvmcz1fLa-zRfsGqTCbew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+53rd+Annual+IEEE%2FACM+International+Symposium+on+Microarchitecture+%28MICRO%29&rft.atitle=DUAL%3A+Acceleration+of+Clustering+Algorithms+using+Digital-based+Processing+In-Memory&rft.au=Imani%2C+Mohsen&rft.au=Pampana%2C+Saikishan&rft.au=Gupta%2C+Saransh&rft.au=Zhou%2C+Minxuan&rft.date=2020-10-01&rft.pub=IEEE&rft.spage=356&rft.epage=371&rft_id=info:doi/10.1109%2FMICRO50266.2020.00039&rft.externalDocID=9251944