PunyVis: A Visual Analytics Approach for Identifying Homograph Phishing Attacks

Attackers seeking to deceive web users into visiting malicious websites can exploit limitations of the tools intended to help browsers translate domain names containing non-ASCII characters, or internationalized domain names (IDNs). These attacks, called homograph phishing, involve registering Unico...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Symposium on Visualization for Cyber Security (VIZSEC) (Online) s. 1 - 10
Hlavní autoři: Fouss, Brett, Ross, Dennis M., Wollaber, Allan B., Gomez, Steven R.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2019
Témata:
ISSN:2639-4332
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Attackers seeking to deceive web users into visiting malicious websites can exploit limitations of the tools intended to help browsers translate domain names containing non-ASCII characters, or internationalized domain names (IDNs). These attacks, called homograph phishing, involve registering Unicode domain names that are visually similar to legitimate ones but direct users to distinct servers. Tools exist to identify when domains use non-ASCII characters, which get translated by the Punycode protocol to work with the Domain Name System (DNS); however, these tools cannot automatically distinguish between benign use cases and ones with malicious intent, leading to high rates of false-positive alerts and increasing the workload of analysts looking for evidence of homograph phishing.To address this problem, we present PunyVis, a visual analytics system for exploring and identifying potential homograph attacks on large network datasets. By targeting instances of Punycode that use easily-confusable ASCII characters to spoof popular websites, PunyVis quickly condenses large datasets into a small number of potentially malicious records. Using the interactive tool, analysts can evaluate potential phishing instances and view supporting information from multiple data sources, as well as gain insight about overall risk and threat regarding homograph attacks. We demonstrate how PunyVis supports analysts in a case study with domain experts, and identified divergent analysis strategies and the need for interactions that support how analysts begin exploration and pivot around hypotheses. Finally, we discuss design implications and opportunities for cyber visual analytics.
AbstractList Attackers seeking to deceive web users into visiting malicious websites can exploit limitations of the tools intended to help browsers translate domain names containing non-ASCII characters, or internationalized domain names (IDNs). These attacks, called homograph phishing, involve registering Unicode domain names that are visually similar to legitimate ones but direct users to distinct servers. Tools exist to identify when domains use non-ASCII characters, which get translated by the Punycode protocol to work with the Domain Name System (DNS); however, these tools cannot automatically distinguish between benign use cases and ones with malicious intent, leading to high rates of false-positive alerts and increasing the workload of analysts looking for evidence of homograph phishing.To address this problem, we present PunyVis, a visual analytics system for exploring and identifying potential homograph attacks on large network datasets. By targeting instances of Punycode that use easily-confusable ASCII characters to spoof popular websites, PunyVis quickly condenses large datasets into a small number of potentially malicious records. Using the interactive tool, analysts can evaluate potential phishing instances and view supporting information from multiple data sources, as well as gain insight about overall risk and threat regarding homograph attacks. We demonstrate how PunyVis supports analysts in a case study with domain experts, and identified divergent analysis strategies and the need for interactions that support how analysts begin exploration and pivot around hypotheses. Finally, we discuss design implications and opportunities for cyber visual analytics.
Author Fouss, Brett
Gomez, Steven R.
Wollaber, Allan B.
Ross, Dennis M.
Author_xml – sequence: 1
  givenname: Brett
  surname: Fouss
  fullname: Fouss, Brett
  organization: MIT Lincoln Laboratory
– sequence: 2
  givenname: Dennis M.
  surname: Ross
  fullname: Ross, Dennis M.
  organization: MIT Lincoln Laboratory
– sequence: 3
  givenname: Allan B.
  surname: Wollaber
  fullname: Wollaber, Allan B.
  organization: MIT Lincoln Laboratory
– sequence: 4
  givenname: Steven R.
  surname: Gomez
  fullname: Gomez, Steven R.
  organization: MIT Lincoln Laboratory
BookMark eNotkMtOwzAURA0CiVLyBWz8Ayn32okf7KIKaKVKrQR0WzmO3RjaJIrTRfh6iujqSLOYM5p7ctO0jSOEIswQQT9tw8-7s5lCIWcMUM80Csw1XJFES4WSKeRKCn5NJkxwnWacszuSxPgFAJwBzxEnZL05NeM2xGda0DNO5kCLxhzGIdhIi67rW2Nr6tueLivXDMGPodnTRXts973parqpQ6z_omIYjP2OD-TWm0N0yYVT8vn68jFfpKv123JerNJwNg8p86K0DHXuVGmz89C8LKG0RigPGchKotTgMa9AeSs0aMOAaTSq0pJxrfiUPP73BufcruvD0fTj7nIB_wXmF1KB
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VizSec48167.2019.9161590
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781728138763
1728138760
EISSN 2639-4332
EndPage 10
ExternalDocumentID 9161590
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-2f6bc2195e8bc41385bb0bca68f0407d71790f15d08fc6909a20291a8d9723983
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792443000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:33:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2f6bc2195e8bc41385bb0bca68f0407d71790f15d08fc6909a20291a8d9723983
PageCount 10
ParticipantIDs ieee_primary_9161590
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle IEEE Symposium on Visualization for Cyber Security (VIZSEC) (Online)
PublicationTitleAbbrev VIZSEC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203511
Score 2.1035364
Snippet Attackers seeking to deceive web users into visiting malicious websites can exploit limitations of the tools intended to help browsers translate domain names...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms cyber security
homograph phishing
human factors
Human-centered computing-Visualization- Visualization application domains-Visual analytics
Security and privacy-Systems security-Browser security
Unicode
visual analytics
visualization design
Title PunyVis: A Visual Analytics Approach for Identifying Homograph Phishing Attacks
URI https://ieeexplore.ieee.org/document/9161590
WOSCitedRecordID wos000792443000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA21ePBUtRV3cvDotMksWbwVsfRUB9TSW5lsOKBTaWcE_fVmGSuCF08ZAoGZfGS-Jd97D4ArrLhKZSwipoSxCQpJokIrEdngNU2oUUihIDZBZzO2WPC8A663WBittW8-00P36O_y1Uo2rlQ24i484TZB36GUBKzWtp6SxP5O7LtZB_HRvPx80DJlmFDXwsWH7fJfOirejUx6_3uBfTD4wePBfOtpDkBHV4eg9y3IANvz2Qf3eVN9zMvNDRxDOzTFC_SkI46KGY5b9nBow1QY8Lke4wSnq9fAWw3z51CRguO6dtj7AXia3D3eTqNWMSEq7efXUWyIkPYflGkmpHVPLBMCCVkQZuxhpYo6Pi6DM4WYkTYv5kWMYo4Lppz4GGfJEehWq0ofA0gZz4zgTBusUqViwROBMUGS2yREGHIC-m5_lm-BFGPZbs3p39NnYM-ZIHTBnYNuvW70BdiV73W5WV96S34B7ECfTw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6MKejT1E28mwcf7ZbeE9-GOCbOWXCOvY3mhgXtZGsF_fUmaZ0IvviUkofQ5pCeS873fQAXrqAi4B5ziGBKJyiR76RSMEcHr4EfK4EFrsQm4vGYzGY0acDlGgsjpbTNZ7JrHu1dvljw0pTKetSEJ1Qn6BthEHi4QmutKyq-Z2_Fvtt1MO1Ns89HyQPiRrFp4qLdeoFfSirWkQxa_3uFHej8IPJQsvY1u9CQ-R60viUZUH1C2_CQlPnHNFtdoT7SQ5m-IEs7YsiYUb_mD0c6UEUVQteinNBw8VoxV6PkuapJoX5RGPR9B54GN5ProVNrJjiZ_vzC8VTEuP4LhZIwrh0UCRnDjKcRUfq4xiI2jFzKDQUmiuvMmKYe9qibEmHkxyjx96GZL3J5ACgmNFSMEqlcEQjhMeoz140wpzoNYSo6hLbZn_lbRYsxr7fm6O_pc9gaTu5H89Ht-O4Yto05qp64E2gWy1KewiZ_L7LV8sxa9QtlwaKW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Symposium+on+Visualization+for+Cyber+Security+%28VIZSEC%29+%28Online%29&rft.atitle=PunyVis%3A+A+Visual+Analytics+Approach+for+Identifying+Homograph+Phishing+Attacks&rft.au=Fouss%2C+Brett&rft.au=Ross%2C+Dennis+M.&rft.au=Wollaber%2C+Allan+B.&rft.au=Gomez%2C+Steven+R.&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2639-4332&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FVizSec48167.2019.9161590&rft.externalDocID=9161590