Deep Learning Aided Joint Source-Channel Coding for Wireless Networks

Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length transmissions. However, the traditional digital transmission scheme is known to suffer from the "cliff effect". By using deep machine lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 IEEE/CIC International Conference on Communications in China (ICCC) S. 805 - 810
Hauptverfasser: Yan, Jintao, Huang, Jianhao, Huang, Chuan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 28.07.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length transmissions. However, the traditional digital transmission scheme is known to suffer from the "cliff effect". By using deep machine learning techniques, we propose an autoencoder-based joint source-channel coding (JSCC) scheme for image transmission and estimation in multi-user wireless sensor networks. At the wireless edge, sensors independently observe a common image and encode the noisy observation to a complex vector. At the receiver side, the decoder receives all the transmitted signals to estimate the common image. We design an end-to-end autoencoder to complete this task, and combine mean squared error (MSE) and structural similarity index matrix (SSIM) as the loss function to explore both pixel-wise and structural features of the images. Our proposed scheme is evaluated in two types of noisy observation scenarios, multi-focus scenario and partial observation scenario, considering both additive white Gaussian noise (AWGN) channel and Rayleigh fading channel, and comparing the performance with the traditional transmission scheme. In both scenarios, our scheme achieves better peak-to-noise ratio (PSNR) performance, especially when the channel bandwidth is limited or the signal-to-noise ratio (SNR) is low.
AbstractList Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length transmissions. However, the traditional digital transmission scheme is known to suffer from the "cliff effect". By using deep machine learning techniques, we propose an autoencoder-based joint source-channel coding (JSCC) scheme for image transmission and estimation in multi-user wireless sensor networks. At the wireless edge, sensors independently observe a common image and encode the noisy observation to a complex vector. At the receiver side, the decoder receives all the transmitted signals to estimate the common image. We design an end-to-end autoencoder to complete this task, and combine mean squared error (MSE) and structural similarity index matrix (SSIM) as the loss function to explore both pixel-wise and structural features of the images. Our proposed scheme is evaluated in two types of noisy observation scenarios, multi-focus scenario and partial observation scenario, considering both additive white Gaussian noise (AWGN) channel and Rayleigh fading channel, and comparing the performance with the traditional transmission scheme. In both scenarios, our scheme achieves better peak-to-noise ratio (PSNR) performance, especially when the channel bandwidth is limited or the signal-to-noise ratio (SNR) is low.
Author Huang, Jianhao
Huang, Chuan
Yan, Jintao
Author_xml – sequence: 1
  givenname: Jintao
  surname: Yan
  fullname: Yan, Jintao
  email: jintao@std.uestc.edu.cn
  organization: Glasgow College University of Electronic Science and Technology of China,Chengdu,China,611731
– sequence: 2
  givenname: Jianhao
  surname: Huang
  fullname: Huang, Jianhao
  email: jianhaohuang1@link.cuhk.edu.cn
  organization: Future Network of Intelligence Institute and School of Science and Engineering The Chinese University of Hong Kong,Shenzhen,China,518172
– sequence: 3
  givenname: Chuan
  surname: Huang
  fullname: Huang, Chuan
  email: huangchuan@cuhk.edu.cn
  organization: Future Network of Intelligence Institute and School of Science and Engineering The Chinese University of Hong Kong,Shenzhen,China,518172
BookMark eNotj8FKxDAUACPowV39AkHyA60vL03SHJe46krRg4rHJW1fNLgmS1oR_17EPc1lGJgFO045EWOXAmohwF5tnHMKjTE1AoraqhYkiCO2EFqrppGtUqdsfU205x35kmJ646s40sjvc0wzf8pfZaDKvfuUaMddHv-MkAt_jYV2NE38gebvXD6mM3YS_G6i8wOX7OVm_ezuqu7xduNWXRUR5FwhBQm9QgzeoFSD8kFq04sRNerW9BTsaH3owaIGaxpAGry1IPphkC14uWQX_91IRNt9iZ--_GwPZ_IXWv1H9g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCC52777.2021.9580301
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665443855
9781665443852
EndPage 810
ExternalDocumentID 9580301
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFB1800800
  funderid: 10.13039/501100012166
– fundername: NSFC
  grantid: 62022070
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-2ef30b522fa7235c5af367b1d262687bef9d9afb0926097402eca9901bcc380a3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001353334200140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 16 07:54:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2ef30b522fa7235c5af367b1d262687bef9d9afb0926097402eca9901bcc380a3
PageCount 6
ParticipantIDs ieee_primary_9580301
PublicationCentury 2000
PublicationDate 2021-July-28
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July-28
  day: 28
PublicationDecade 2020
PublicationTitle 2021 IEEE/CIC International Conference on Communications in China (ICCC)
PublicationTitleAbbrev ICCC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8069986
Snippet Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length...
SourceID ieee
SourceType Publisher
StartPage 805
SubjectTerms autoencoder
AWGN channels
Estimation
Image coding
Image communication
image fusion
image inpainting
Image sensors
Joint source-channel coding
Sensors
wireless sensor network
Wireless sensor networks
Title Deep Learning Aided Joint Source-Channel Coding for Wireless Networks
URI https://ieeexplore.ieee.org/document/9580301
WOSCitedRecordID wos001353334200140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MnlU3UqeTg0Wxt0jTNUeqGioyBCruNNH2RwmjH1vn3m3RlInjxEpKQHySBvO-9vC8P4E4qJ7a0YhSV1DQyGFGlE5dkVgvuyqFtopa8ytksWSzUvAP3By4MIjbOZzjy2eYtP6_MzpvKxkokHsF3oStlvOdqtaTfMFDj5zRNBZNSOq2PhaO28a-oKY3QmJ78b7pTGPyw78j8IFfOoINlHyaPiGvS_ob6SR6KHHPyUhVlTd4a-zv1PIESVyStfDfiwCjxrq0rd5WR2d7ZezuAj-nkPX2ibQgEWrCA15Sh5UHmMJLVknFhhLY8llmYM6eIJDJDq3KlbRYop5c41SBgaLR_6sqM4Umg-Tn0yqrECyARN5xx5A6AiCjXDqfEQjPtRopsnHO8hL7fguV6_8vFsl391d_VQzj2u-ytnCy5hl692eENHJmvuthubpuj-QYiI5BC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKehJZRPnZw4e7dYm7dIcpW5sOsvACbuNNH2RwmjH1vn3m3RlInjxEpKQD5JA3u-9vF8ewAMXRmxJQR0UXDq-Qt8RMjRJomXATNnTVdSSCY_jcD4X0wY87rkwiFg5n2HXZqu3_LRQW2sq64kgtAj-AA5t5KyarVXTfj1X9MZRFAWUc270Pup16-a_4qZUYmN4-r8Jz6D9w78j071kOYcG5i0YPCOuSP0f6id5ylJMyUuR5SV5ryzwjmUK5LgkUWG7EQNHiXVuXZrLjMQ7d-9NGz6Gg1k0cuogCE5GXVY6FDVzE4OStOSUBSqQmvV54qXUqCIhT1CLVEiduMJoJkY5cCkqaR-7EqVY6Ep2Ac28yPESiM8UowyZgSCBn0qDVPqBpNKM5Ot-yrADLbsFi9Xun4tFvfqrv6vv4Xg0e5ssJuP49RpO7I5bmycNb6BZrrd4C0fqq8w267vqmL4B2DiTiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCIC+International+Conference+on+Communications+in+China+%28ICCC%29&rft.atitle=Deep+Learning+Aided+Joint+Source-Channel+Coding+for+Wireless+Networks&rft.au=Yan%2C+Jintao&rft.au=Huang%2C+Jianhao&rft.au=Huang%2C+Chuan&rft.date=2021-07-28&rft.pub=IEEE&rft.spage=805&rft.epage=810&rft_id=info:doi/10.1109%2FICCC52777.2021.9580301&rft.externalDocID=9580301