Deep Learning Aided Joint Source-Channel Coding for Wireless Networks
Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length transmissions. However, the traditional digital transmission scheme is known to suffer from the "cliff effect". By using deep machine lear...
Gespeichert in:
| Veröffentlicht in: | 2021 IEEE/CIC International Conference on Communications in China (ICCC) S. 805 - 810 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
28.07.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length transmissions. However, the traditional digital transmission scheme is known to suffer from the "cliff effect". By using deep machine learning techniques, we propose an autoencoder-based joint source-channel coding (JSCC) scheme for image transmission and estimation in multi-user wireless sensor networks. At the wireless edge, sensors independently observe a common image and encode the noisy observation to a complex vector. At the receiver side, the decoder receives all the transmitted signals to estimate the common image. We design an end-to-end autoencoder to complete this task, and combine mean squared error (MSE) and structural similarity index matrix (SSIM) as the loss function to explore both pixel-wise and structural features of the images. Our proposed scheme is evaluated in two types of noisy observation scenarios, multi-focus scenario and partial observation scenario, considering both additive white Gaussian noise (AWGN) channel and Rayleigh fading channel, and comparing the performance with the traditional transmission scheme. In both scenarios, our scheme achieves better peak-to-noise ratio (PSNR) performance, especially when the channel bandwidth is limited or the signal-to-noise ratio (SNR) is low. |
|---|---|
| AbstractList | Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length transmissions. However, the traditional digital transmission scheme is known to suffer from the "cliff effect". By using deep machine learning techniques, we propose an autoencoder-based joint source-channel coding (JSCC) scheme for image transmission and estimation in multi-user wireless sensor networks. At the wireless edge, sensors independently observe a common image and encode the noisy observation to a complex vector. At the receiver side, the decoder receives all the transmitted signals to estimate the common image. We design an end-to-end autoencoder to complete this task, and combine mean squared error (MSE) and structural similarity index matrix (SSIM) as the loss function to explore both pixel-wise and structural features of the images. Our proposed scheme is evaluated in two types of noisy observation scenarios, multi-focus scenario and partial observation scenario, considering both additive white Gaussian noise (AWGN) channel and Rayleigh fading channel, and comparing the performance with the traditional transmission scheme. In both scenarios, our scheme achieves better peak-to-noise ratio (PSNR) performance, especially when the channel bandwidth is limited or the signal-to-noise ratio (SNR) is low. |
| Author | Huang, Jianhao Huang, Chuan Yan, Jintao |
| Author_xml | – sequence: 1 givenname: Jintao surname: Yan fullname: Yan, Jintao email: jintao@std.uestc.edu.cn organization: Glasgow College University of Electronic Science and Technology of China,Chengdu,China,611731 – sequence: 2 givenname: Jianhao surname: Huang fullname: Huang, Jianhao email: jianhaohuang1@link.cuhk.edu.cn organization: Future Network of Intelligence Institute and School of Science and Engineering The Chinese University of Hong Kong,Shenzhen,China,518172 – sequence: 3 givenname: Chuan surname: Huang fullname: Huang, Chuan email: huangchuan@cuhk.edu.cn organization: Future Network of Intelligence Institute and School of Science and Engineering The Chinese University of Hong Kong,Shenzhen,China,518172 |
| BookMark | eNotj8FKxDAUACPowV39AkHyA60vL03SHJe46krRg4rHJW1fNLgmS1oR_17EPc1lGJgFO045EWOXAmohwF5tnHMKjTE1AoraqhYkiCO2EFqrppGtUqdsfU205x35kmJ646s40sjvc0wzf8pfZaDKvfuUaMddHv-MkAt_jYV2NE38gebvXD6mM3YS_G6i8wOX7OVm_ezuqu7xduNWXRUR5FwhBQm9QgzeoFSD8kFq04sRNerW9BTsaH3owaIGaxpAGry1IPphkC14uWQX_91IRNt9iZ--_GwPZ_IXWv1H9g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCC52777.2021.9580301 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665443855 9781665443852 |
| EndPage | 810 |
| ExternalDocumentID | 9580301 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFB1800800 funderid: 10.13039/501100012166 – fundername: NSFC grantid: 62022070 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-2ef30b522fa7235c5af367b1d262687bef9d9afb0926097402eca9901bcc380a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001353334200140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 16 07:54:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-2ef30b522fa7235c5af367b1d262687bef9d9afb0926097402eca9901bcc380a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9580301 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July-28 |
| PublicationDateYYYYMMDD | 2021-07-28 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE/CIC International Conference on Communications in China (ICCC) |
| PublicationTitleAbbrev | ICCC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8069986 |
| Snippet | Wireless image transmission and estimation techniques have found a variety of applications in 5G Internet of Things (IoT) under the finite block length... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 805 |
| SubjectTerms | autoencoder AWGN channels Estimation Image coding Image communication image fusion image inpainting Image sensors Joint source-channel coding Sensors wireless sensor network Wireless sensor networks |
| Title | Deep Learning Aided Joint Source-Channel Coding for Wireless Networks |
| URI | https://ieeexplore.ieee.org/document/9580301 |
| WOSCitedRecordID | wos001353334200140&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MnlU3UqeTg0Wxt0jTNUeqGioyBCruNNH2RwmjH1vn3m3RlInjxEpKQHySBvO-9vC8P4E4qJ7a0YhSV1DQyGFGlE5dkVgvuyqFtopa8ytksWSzUvAP3By4MIjbOZzjy2eYtP6_MzpvKxkokHsF3oStlvOdqtaTfMFDj5zRNBZNSOq2PhaO28a-oKY3QmJ78b7pTGPyw78j8IFfOoINlHyaPiGvS_ob6SR6KHHPyUhVlTd4a-zv1PIESVyStfDfiwCjxrq0rd5WR2d7ZezuAj-nkPX2ibQgEWrCA15Sh5UHmMJLVknFhhLY8llmYM6eIJDJDq3KlbRYop5c41SBgaLR_6sqM4Umg-Tn0yqrECyARN5xx5A6AiCjXDqfEQjPtRopsnHO8hL7fguV6_8vFsl391d_VQzj2u-ytnCy5hl692eENHJmvuthubpuj-QYiI5BC |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKehJZRPnZw4e7dYm7dIcpW5sOsvACbuNNH2RwmjH1vn3m3RlInjxEpKQD5JA3u-9vF8ewAMXRmxJQR0UXDq-Qt8RMjRJomXATNnTVdSSCY_jcD4X0wY87rkwiFg5n2HXZqu3_LRQW2sq64kgtAj-AA5t5KyarVXTfj1X9MZRFAWUc270Pup16-a_4qZUYmN4-r8Jz6D9w78j071kOYcG5i0YPCOuSP0f6id5ylJMyUuR5SV5ryzwjmUK5LgkUWG7EQNHiXVuXZrLjMQ7d-9NGz6Gg1k0cuogCE5GXVY6FDVzE4OStOSUBSqQmvV54qXUqCIhT1CLVEiduMJoJkY5cCkqaR-7EqVY6Ep2Ac28yPESiM8UowyZgSCBn0qDVPqBpNKM5Ot-yrADLbsFi9Xun4tFvfqrv6vv4Xg0e5ssJuP49RpO7I5bmycNb6BZrrd4C0fqq8w267vqmL4B2DiTiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE%2FCIC+International+Conference+on+Communications+in+China+%28ICCC%29&rft.atitle=Deep+Learning+Aided+Joint+Source-Channel+Coding+for+Wireless+Networks&rft.au=Yan%2C+Jintao&rft.au=Huang%2C+Jianhao&rft.au=Huang%2C+Chuan&rft.date=2021-07-28&rft.pub=IEEE&rft.spage=805&rft.epage=810&rft_id=info:doi/10.1109%2FICCC52777.2021.9580301&rft.externalDocID=9580301 |