Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access Points

This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to decide whether offloading their computation tasks to the cloudlet is energy wise beneficial. As there are multiple APs available to connect th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE International Conference on Mobile Cloud Computing, Services, and Engineering. Online) S. 31 - 38
Hauptverfasser: Mahn, Tobias, Wirth, Maximilian, Klein, Anja
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2020
Schlagworte:
ISBN:9781728110356, 1728110351
ISSN:2573-7562
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to decide whether offloading their computation tasks to the cloudlet is energy wise beneficial. As there are multiple APs available to connect the MUs to the cloudlet and communication and computation resources have to be shared among all MUs, each MU also has to choose the AP for transmission that minimizes its offloading energy under the given fraction of the overall resources. The problem is formulated as a energy minimization problem with a maximum offloading time constraint. MUs not only need to consider the energy required for local computation or offloading, but simultaneously avoid an overlong processing time of offloaded computation. This joint offloading decision and resource allocation is divided into two subproblems in the proposed approach. The resource allocation problem is reformulated by using Lagrange multipliers and closed-forms for the calculation of the shared resources are found. These results can be integrated into the proposed game theoretic algorithm for the offloading decision problem. The algorithm is based on a potential game and therefore, can be proven to converge to a Nash equilibrium. Numerical results show a benefit of the proposed resource allocation strategy, a performance of the proposed game algorithm near the optimal solution and a fast algorithm execution time that can even be significantly improved by proposed sorting metrics. mobile edge computing, joint optimization, resource allocation strategy, game theory
AbstractList This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to decide whether offloading their computation tasks to the cloudlet is energy wise beneficial. As there are multiple APs available to connect the MUs to the cloudlet and communication and computation resources have to be shared among all MUs, each MU also has to choose the AP for transmission that minimizes its offloading energy under the given fraction of the overall resources. The problem is formulated as a energy minimization problem with a maximum offloading time constraint. MUs not only need to consider the energy required for local computation or offloading, but simultaneously avoid an overlong processing time of offloaded computation. This joint offloading decision and resource allocation is divided into two subproblems in the proposed approach. The resource allocation problem is reformulated by using Lagrange multipliers and closed-forms for the calculation of the shared resources are found. These results can be integrated into the proposed game theoretic algorithm for the offloading decision problem. The algorithm is based on a potential game and therefore, can be proven to converge to a Nash equilibrium. Numerical results show a benefit of the proposed resource allocation strategy, a performance of the proposed game algorithm near the optimal solution and a fast algorithm execution time that can even be significantly improved by proposed sorting metrics. mobile edge computing, joint optimization, resource allocation strategy, game theory
Author Wirth, Maximilian
Klein, Anja
Mahn, Tobias
Author_xml – sequence: 1
  givenname: Tobias
  surname: Mahn
  fullname: Mahn, Tobias
  organization: Technische Universität Darmstadt
– sequence: 2
  givenname: Maximilian
  surname: Wirth
  fullname: Wirth, Maximilian
  organization: Technische Universität Darmstadt
– sequence: 3
  givenname: Anja
  surname: Klein
  fullname: Klein, Anja
  organization: Technische Universität Darmstadt
BookMark eNotjstOwzAURC0eEqX0C9hYYp1y_YidLKsoFKRWsCjrKLZvUqMkrhJXqH9PpLKaxcyZmUdyN4QBCXlhsGYM8td9ML7DogtnJ7MM-JoDhzUAMHFDFjzVItGp4rdkleuMaZ7NlEjVA1lN088cExyEVGxBqm3dIz0cMYwYvaWbrg2jj8eeNmGk5YBje6Fl03jrcYj0uktL1yItQn86Rz-09HcG6P7cRX-azY21OE30K_ghTk_kvqm7CVf_uiTfb-WheE92n9uPYrNL_PwkJhytFarOJUojUEinZGMMF9xiLnSTGgkGgRmZ1c7UDpRgTnNQThsjjUzFkjxfez0iVqfR9_V4qXLGlZZK_AEWD1sY
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MobileCloud48802.2020.00013
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès Toulouse INP et ENVT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2573-7562
EndPage 38
ExternalDocumentID 9126746
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-2ecc36a94e4b3e34d64fbb232ce937f5b40be01b48adbad0631d7206d7bb4b453
IEDL.DBID RIE
ISBN 9781728110356
1728110351
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000628973400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 30 06:11:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2ecc36a94e4b3e34d64fbb232ce937f5b40be01b48adbad0631d7206d7bb4b453
PageCount 8
ParticipantIDs ieee_primary_9126746
PublicationCentury 2000
PublicationDate 2020-Aug
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Mobile Cloud Computing, Services, and Engineering. Online)
PublicationTitleAbbrev MOBILECLOUD
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203461
ssib041613510
Score 1.7508477
Snippet This paper considers a Mobile Edge Computing scenario with multiple mobile units (MUs), multiple access points (APs) and one cloudlet server. The MUs have to...
SourceID ieee
SourceType Publisher
StartPage 31
SubjectTerms game-theory
Games
joint-optimization
Minimization
mobile-edge-computing
Multi-access edge computing
Numerical simulation
Optimization
Resource management
resource-allocation-strategy
Servers
Sorting
Time factors
Title Game Theoretic Algorithm for Energy Efficient Mobile Edge Computing with Multiple Access Points
URI https://ieeexplore.ieee.org/document/9126746
WOSCitedRecordID wos000628973400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaCiGmAi3iLUswEprEr2SsqhQGWnUoqFsVx5cSiSaoTfn92E5SGFjY8pAc63zOfTrfdx9C91RIwYQnnZTT0KGB5I5MeOhwAcJQGVVsE_pvL2I6DRaLcNZCD3suDADY4jN4NJf2LF8Vyc6kygah53NBeRu1heAVV6vxHYPTCatDmfkLE98llHuGyyX8QAc5_bZu8dTc80N0V_fcHEwKqXfh6KPYKePShqLlm6Iv1-ge_NJdsWFn3P3fhI9R_4e_h2f7yHSCWpCfom4j4IDr_dxDy6d4DXjecBnx8GNVbLLyfY01lMWRpQXiyDaZ0N_B1exxpFaAq8H06NhkcvGkrkvEQyvAiGdFlpfbPnodR_PRs1MrLjiZNlfp-HpBCY9DClQSIFRxmkqpQVcCGsakTFJXgutJGsRKxkrDG08J3-VKSEklZeQMdfIih3OEiUkAMXBjFngUGJPC84HEfpoKnqauuEA9Y6_lZ9VUY1mb6vLvx1foyCxIVXl3jTrlZgc36CD5KrPt5tZ6wjesLa8C
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCTixtIgdS3AkkHhNjlWVAqKteiiotyquJ6USNKikfD92FuDAhVsWybHG48zTeN48gCuutBIq0F4qeeTxUEtPT2TkSYXKURlNUiT0n7uq3w9Ho2iwAtffXBhELIrP8MZdFmf5JpssXarsNgqoVFyuwrrgnPolW6v2HofUmaiCmfsPM-ozLgPH5lI0tGHOvq2aPNX3chMuq66bt71M233Yfs2Wxjm1I2lRV_blO-WDX8orReDp7PxvyrvQ_GHwkcF3bNqDFZzvw04t4UCqHd2A8V3yhmRYsxlJ63WaLWb5yxuxYJbEBTGQxEWbCfsdUs6exGaKpBzMjk5cLpf0qspE0iokGMkgm83zjyY8deJh-96rNBe8mTVX7lG7pEwmEUeuGTJuJE-1trBrghbIpEJzX6MfaB4mRifGApzAKOpLo7Tmmgt2AGvzbI6HQJhLAQn0ExEGHIXQKqDIEpqmSqapr46g4ew1fi_baowrUx3__fgCtu6Hve64-9B_PIFttzhlHd4prOWLJZ7BxuQzn30szguv-AL3vrJJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Mobile+Cloud+Computing%2C+Services%2C+and+Engineering.+Online%29&rft.atitle=Game+Theoretic+Algorithm+for+Energy+Efficient+Mobile+Edge+Computing+with+Multiple+Access+Points&rft.au=Mahn%2C+Tobias&rft.au=Wirth%2C+Maximilian&rft.au=Klein%2C+Anja&rft.date=2020-08-01&rft.pub=IEEE&rft.isbn=9781728110356&rft.eissn=2573-7562&rft.spage=31&rft.epage=38&rft_id=info:doi/10.1109%2FMobileCloud48802.2020.00013&rft.externalDocID=9126746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728110356/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728110356/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728110356/sc.gif&client=summon&freeimage=true