Data-Aided MIMO Channel Estimation by Clustering and Reinforcement-Learning

In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and reinforcement-learning for multiple-input multiple-output (MI-MO) systems. For clustering-based data detection, we develop a system constrain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC S. 584 - 589
Hauptverfasser: Li, Xing, Wang, Qianfan, Yang, Hongqi, Ma, Xiao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 10.04.2022
Schlagworte:
ISSN:1558-2612
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and reinforcement-learning for multiple-input multiple-output (MI-MO) systems. For clustering-based data detection, we develop a system constrained Gaussian mixture model (SCGMM), in which the a posteriori probabilities (APPs) can be calculated by the expectation-maximization (EM) algorithm. The initial centroids of the SCGMM are sensitive to the channel estimation. To obtain robust channel estimation, we design initial pilots that can reduce the estimated error of the LMMSE. To further improve the quality of channel estimation, we propose a data-aided channel estimation algorithm, which exploits the techniques of coding and reinforcement-learning to obtain soft symbol decisions. Numerical results show that the proposed method can approach the bit-error-rate (BER) performance with perfect channel state information (CSI) in the high signal-to-noise (SNR) region.
AbstractList In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and reinforcement-learning for multiple-input multiple-output (MI-MO) systems. For clustering-based data detection, we develop a system constrained Gaussian mixture model (SCGMM), in which the a posteriori probabilities (APPs) can be calculated by the expectation-maximization (EM) algorithm. The initial centroids of the SCGMM are sensitive to the channel estimation. To obtain robust channel estimation, we design initial pilots that can reduce the estimated error of the LMMSE. To further improve the quality of channel estimation, we propose a data-aided channel estimation algorithm, which exploits the techniques of coding and reinforcement-learning to obtain soft symbol decisions. Numerical results show that the proposed method can approach the bit-error-rate (BER) performance with perfect channel state information (CSI) in the high signal-to-noise (SNR) region.
Author Li, Xing
Yang, Hongqi
Wang, Qianfan
Ma, Xiao
Author_xml – sequence: 1
  givenname: Xing
  surname: Li
  fullname: Li, Xing
  email: lixing55@mail2.sysu.edu.cn
  organization: Sun Yat-sen University,School of Computer Science and Engineering,Guangzhou,China,510006
– sequence: 2
  givenname: Qianfan
  surname: Wang
  fullname: Wang, Qianfan
  email: wangqf6@mail2.sysu.edu.cn
  organization: Sun Yat-sen University,School of Electronics and Communication Engineering,Guangzhou,China,510006
– sequence: 3
  givenname: Hongqi
  surname: Yang
  fullname: Yang, Hongqi
  email: mcsyhq@mail.sysu.edu.cn
  organization: Sun Yat-sen University,School of Computer Science and Engineering,Guangzhou,China,510006
– sequence: 4
  givenname: Xiao
  surname: Ma
  fullname: Ma, Xiao
  email: maxiao@mail.sysu.edu.cn
  organization: Sun Yat-sen University,School of Computer Science and Engineering,Guangzhou,China,510006
BookMark eNotj9FKwzAUhqMouE6fQJC8QGty0ibr5YibDjsHong5TpsTjXSptPVib2_BXX0XH3z8f8IuYheJsTspMilFef9hX2whhZEZCICsNEbqUp2xRGpd5DloDedsJotikYKWcMWSYfgWAsQkZ-z5AUdMl8GR49vNdsftF8ZILV8NYzjgGLrI6yO37e8wUh_iJ8fo-CuF6Lu-oQPFMa0I-zipa3bpsR3o5sQ5e1-v3uxTWu0eN3ZZpQGEGlNw2oHQjStrBZI8oPFkaIGkQGnvkWpfSEO5q4URpfcGvQOfO8TG1KZWc3b73w1EtP_pp539cX86rv4AxIFQvg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCNC51071.2022.9771693
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665442662
9781665442664
EISSN 1558-2612
EndPage 589
ExternalDocumentID 9771693
Genre orig-research
GrantInformation_xml – fundername: Guangdong Province Key Laboratory of Computational Science
  funderid: 10.13039/501100019318
– fundername: National Key Research and Development Program of China
  funderid: 10.13039/501100012166
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i203t-2d6d206cd9b321ef2a7fe7e8ae3236ffaebf517e4db0709ff7afd2f4daac7b7b3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819473100100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2d6d206cd9b321ef2a7fe7e8ae3236ffaebf517e4db0709ff7afd2f4daac7b7b3
PageCount 6
ParticipantIDs ieee_primary_9771693
PublicationCentury 2000
PublicationDate 2022-April-10
PublicationDateYYYYMMDD 2022-04-10
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April-10
  day: 10
PublicationDecade 2020
PublicationTitle IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC
PublicationTitleAbbrev WCNC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020544
Score 2.2516885
Snippet In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and...
SourceID ieee
SourceType Publisher
StartPage 584
SubjectTerms Channel estimation
Clustering algorithms
Encoding
Modulation
Phase shift keying
Probability
Symbols
Title Data-Aided MIMO Channel Estimation by Clustering and Reinforcement-Learning
URI https://ieeexplore.ieee.org/document/9771693
WOSCitedRecordID wos000819473100100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8aAXH634JgePpt1NdpPdo6wtirQWUeytTDYTKZSt1K3gvzfZLlXBi7cQCIFJJvPK9w0hl7GNcylBMG1kxCJtU5ZimDIJIUoIpLYmqJpNqNEomUzScYNcbbAwiFh9PsOuH1a1fLPIVz5V1nO-iucOaZKmUnKN1doEV871iGoEcBikvZdslLnrpnwIyHm3XvmrhUplQQa7_9t7j3S-oXh0vDEy-6SBxQHZ-cEi2Cb3N1ACu54ZNHR4N3ygHjFQ4Jz2nfqukYlUf9JsvvKkCG4JhcLQR6w4U_MqPchqmtXXDnke9J-yW1b3SGAzHoiScSMND2RuUi14iJaDsqgwARRcSGsBtY1DhZHRTrl9ghas4TYyALnSSotD0ioWBR4R6o11kKQAkLigGRTE1j2HcZgbK0QUR8ek7cUyfVvTYExriZz8PX1Ktr3kfeElDM5Iq1yu8Jxs5R_l7H15UZ3dF_HPm_k
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCuqLl028mwcfzdYmbdo-St3Y2FaHTNzbOGlOZDA6mZvgv7fpylTwxbcQCIEkJ-eSfN9HyK1v_FRKEExp6TFPmYhF6EZMgosSHKmMdgqxiSBJwvE4GlbI3QYLg4jF5zNs2Gbxlq_n6cqWypp5rGK5Q7bItlXOKtFam_QqDz68EgPsOlHzJU7i_MAFNgnkvFGO_SWiUviQ9sH_Zj8k9W8wHh1u3MwRqWB2TPZ_8AjWSO8BlsDupxo1HXQHj9RiBjKc0VZuwGtsIlWfNJ6tLC1CPoRCpukTFqypaVEgZCXR6mudPLdbo7jDSpUENuWOWDKupeaOTHWkBHfRcAgMBhgCCi6kMYDK-G6Anla5edsSLRjNjacB0kAFSpyQajbP8JRQ666dMAKAME-bIQDf5Bei76baCOH53hmp2WWZvK2JMCblipz_3X1DdjujQX_S7ya9C7Jnd8E-w7jOJakuFyu8Ijvpx3L6vrgu9vELQiGfQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Data-Aided+MIMO+Channel+Estimation+by+Clustering+and+Reinforcement-Learning&rft.au=Li%2C+Xing&rft.au=Wang%2C+Qianfan&rft.au=Yang%2C+Hongqi&rft.au=Ma%2C+Xiao&rft.date=2022-04-10&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=584&rft.epage=589&rft_id=info:doi/10.1109%2FWCNC51071.2022.9771693&rft.externalDocID=9771693