Data-Aided MIMO Channel Estimation by Clustering and Reinforcement-Learning
In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and reinforcement-learning for multiple-input multiple-output (MI-MO) systems. For clustering-based data detection, we develop a system constrain...
Gespeichert in:
| Veröffentlicht in: | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC S. 584 - 589 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
10.04.2022
|
| Schlagworte: | |
| ISSN: | 1558-2612 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and reinforcement-learning for multiple-input multiple-output (MI-MO) systems. For clustering-based data detection, we develop a system constrained Gaussian mixture model (SCGMM), in which the a posteriori probabilities (APPs) can be calculated by the expectation-maximization (EM) algorithm. The initial centroids of the SCGMM are sensitive to the channel estimation. To obtain robust channel estimation, we design initial pilots that can reduce the estimated error of the LMMSE. To further improve the quality of channel estimation, we propose a data-aided channel estimation algorithm, which exploits the techniques of coding and reinforcement-learning to obtain soft symbol decisions. Numerical results show that the proposed method can approach the bit-error-rate (BER) performance with perfect channel state information (CSI) in the high signal-to-noise (SNR) region. |
|---|---|
| AbstractList | In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and reinforcement-learning for multiple-input multiple-output (MI-MO) systems. For clustering-based data detection, we develop a system constrained Gaussian mixture model (SCGMM), in which the a posteriori probabilities (APPs) can be calculated by the expectation-maximization (EM) algorithm. The initial centroids of the SCGMM are sensitive to the channel estimation. To obtain robust channel estimation, we design initial pilots that can reduce the estimated error of the LMMSE. To further improve the quality of channel estimation, we propose a data-aided channel estimation algorithm, which exploits the techniques of coding and reinforcement-learning to obtain soft symbol decisions. Numerical results show that the proposed method can approach the bit-error-rate (BER) performance with perfect channel state information (CSI) in the high signal-to-noise (SNR) region. |
| Author | Li, Xing Yang, Hongqi Wang, Qianfan Ma, Xiao |
| Author_xml | – sequence: 1 givenname: Xing surname: Li fullname: Li, Xing email: lixing55@mail2.sysu.edu.cn organization: Sun Yat-sen University,School of Computer Science and Engineering,Guangzhou,China,510006 – sequence: 2 givenname: Qianfan surname: Wang fullname: Wang, Qianfan email: wangqf6@mail2.sysu.edu.cn organization: Sun Yat-sen University,School of Electronics and Communication Engineering,Guangzhou,China,510006 – sequence: 3 givenname: Hongqi surname: Yang fullname: Yang, Hongqi email: mcsyhq@mail.sysu.edu.cn organization: Sun Yat-sen University,School of Computer Science and Engineering,Guangzhou,China,510006 – sequence: 4 givenname: Xiao surname: Ma fullname: Ma, Xiao email: maxiao@mail.sysu.edu.cn organization: Sun Yat-sen University,School of Computer Science and Engineering,Guangzhou,China,510006 |
| BookMark | eNotj9FKwzAUhqMouE6fQJC8QGty0ibr5YibDjsHong5TpsTjXSptPVib2_BXX0XH3z8f8IuYheJsTspMilFef9hX2whhZEZCICsNEbqUp2xRGpd5DloDedsJotikYKWcMWSYfgWAsQkZ-z5AUdMl8GR49vNdsftF8ZILV8NYzjgGLrI6yO37e8wUh_iJ8fo-CuF6Lu-oQPFMa0I-zipa3bpsR3o5sQ5e1-v3uxTWu0eN3ZZpQGEGlNw2oHQjStrBZI8oPFkaIGkQGnvkWpfSEO5q4URpfcGvQOfO8TG1KZWc3b73w1EtP_pp539cX86rv4AxIFQvg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WCNC51071.2022.9771693 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1665442662 9781665442664 |
| EISSN | 1558-2612 |
| EndPage | 589 |
| ExternalDocumentID | 9771693 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Province Key Laboratory of Computational Science funderid: 10.13039/501100019318 – fundername: National Key Research and Development Program of China funderid: 10.13039/501100012166 |
| GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-2d6d206cd9b321ef2a7fe7e8ae3236ffaebf517e4db0709ff7afd2f4daac7b7b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819473100100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:24:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-2d6d206cd9b321ef2a7fe7e8ae3236ffaebf517e4db0709ff7afd2f4daac7b7b3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9771693 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-April-10 |
| PublicationDateYYYYMMDD | 2022-04-10 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-April-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC |
| PublicationTitleAbbrev | WCNC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020544 |
| Score | 2.2516885 |
| Snippet | In this paper, we propose a data-aided channel estimator, which can improve the performance of the linear minimum-mean-squared-error (LMMSE) by clustering and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 584 |
| SubjectTerms | Channel estimation Clustering algorithms Encoding Modulation Phase shift keying Probability Symbols |
| Title | Data-Aided MIMO Channel Estimation by Clustering and Reinforcement-Learning |
| URI | https://ieeexplore.ieee.org/document/9771693 |
| WOSCitedRecordID | wos000819473100100&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8aAXH634JgePpt1NdpPdo6wtirQWUeytTDYTKZSt1K3gvzfZLlXBi7cQCIFJJvPK9w0hl7GNcylBMG1kxCJtU5ZimDIJIUoIpLYmqJpNqNEomUzScYNcbbAwiFh9PsOuH1a1fLPIVz5V1nO-iucOaZKmUnKN1doEV871iGoEcBikvZdslLnrpnwIyHm3XvmrhUplQQa7_9t7j3S-oXh0vDEy-6SBxQHZ-cEi2Cb3N1ACu54ZNHR4N3ygHjFQ4Jz2nfqukYlUf9JsvvKkCG4JhcLQR6w4U_MqPchqmtXXDnke9J-yW1b3SGAzHoiScSMND2RuUi14iJaDsqgwARRcSGsBtY1DhZHRTrl9ghas4TYyALnSSotD0ioWBR4R6o11kKQAkLigGRTE1j2HcZgbK0QUR8ek7cUyfVvTYExriZz8PX1Ktr3kfeElDM5Iq1yu8Jxs5R_l7H15UZ3dF_HPm_k |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCuqLl028mwcfzdYmbdo-St3Y2FaHTNzbOGlOZDA6mZvgv7fpylTwxbcQCIEkJ-eSfN9HyK1v_FRKEExp6TFPmYhF6EZMgosSHKmMdgqxiSBJwvE4GlbI3QYLg4jF5zNs2Gbxlq_n6cqWypp5rGK5Q7bItlXOKtFam_QqDz68EgPsOlHzJU7i_MAFNgnkvFGO_SWiUviQ9sH_Zj8k9W8wHh1u3MwRqWB2TPZ_8AjWSO8BlsDupxo1HXQHj9RiBjKc0VZuwGtsIlWfNJ6tLC1CPoRCpukTFqypaVEgZCXR6mudPLdbo7jDSpUENuWOWDKupeaOTHWkBHfRcAgMBhgCCi6kMYDK-G6Anla5edsSLRjNjacB0kAFSpyQajbP8JRQ666dMAKAME-bIQDf5Bei76baCOH53hmp2WWZvK2JMCblipz_3X1DdjujQX_S7ya9C7Jnd8E-w7jOJakuFyu8Ijvpx3L6vrgu9vELQiGfQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Data-Aided+MIMO+Channel+Estimation+by+Clustering+and+Reinforcement-Learning&rft.au=Li%2C+Xing&rft.au=Wang%2C+Qianfan&rft.au=Yang%2C+Hongqi&rft.au=Ma%2C+Xiao&rft.date=2022-04-10&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=584&rft.epage=589&rft_id=info:doi/10.1109%2FWCNC51071.2022.9771693&rft.externalDocID=9771693 |