A Computationally Efficient Algorithm for Quickest Change Detection in Anonymous Heterogeneous Sensor Networks
The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups follow different data generating distributions. At some unknown time, an event occurs in the network and changes the data generating distribut...
Uloženo v:
| Vydáno v: | 2021 IEEE International Symposium on Information Theory (ISIT) s. 599 - 604 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
12.07.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups follow different data generating distributions. At some unknown time, an event occurs in the network and changes the data generating distribution of the sensors. The goal is to detect the change as quickly as possible, subject to false alarm constraints. The anonymous setting is studied, where at each time step, the fusion center receives unordered samples without knowing which sensor each sample comes from, and thus does not know its exact distribution. In [1], an optimal algorithm was provided, which however is not computational efficient for large networks. In this paper, a computationally efficient test is proposed and a novel theoretical characterization of its false alarm rate is further developed. |
|---|---|
| AbstractList | The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups follow different data generating distributions. At some unknown time, an event occurs in the network and changes the data generating distribution of the sensors. The goal is to detect the change as quickly as possible, subject to false alarm constraints. The anonymous setting is studied, where at each time step, the fusion center receives unordered samples without knowing which sensor each sample comes from, and thus does not know its exact distribution. In [1], an optimal algorithm was provided, which however is not computational efficient for large networks. In this paper, a computationally efficient test is proposed and a novel theoretical characterization of its false alarm rate is further developed. |
| Author | Zhang, Ruizhi Sun, Zhongchang Zou, Shaofeng Li, Qunwei |
| Author_xml | – sequence: 1 givenname: Zhongchang surname: Sun fullname: Sun, Zhongchang email: zhongcha@buffalo.edu organization: University at Buffalo, the State University of New York,Buffalo,NY,USA – sequence: 2 givenname: Qunwei surname: Li fullname: Li, Qunwei email: qunwei.qw@antfin.com organization: Ant Financial,China – sequence: 3 givenname: Ruizhi surname: Zhang fullname: Zhang, Ruizhi email: rzhang35@unl.edu organization: University of Nebraska-Lincoln,Lincoln,NE,USA – sequence: 4 givenname: Shaofeng surname: Zou fullname: Zou, Shaofeng email: szou3@buffalo.edu organization: University at Buffalo, the State University of New York,Buffalo,NY,USA |
| BookMark | eNotUN1qwjAYzWC72JxPMBh5AV2SJk1yWTo3BdkYumtJ0y8abBNpI6Nvv4penR8458B5QvchBkDolZI5pUS_rTarLRdU8jkjjM71SJXid2iqpaIiU7liRKtHFApcxvZ0Tib5GEzTDHjhnLceQsJFs4-dT4cWu9jhn7O3R-gTLg8m7AG_QwJ7SWEfcDHuD20893g52l3cQ4CL2kDox-wXpL_YHftn9OBM08P0hhP0-7HYlsvZ-vtzVRbrmWckSzNWC5eJSkItnSTWVdzmWcVlBdZaaUdfGOFqVlW1oVoRTQQ3llAmuK5znmcT9HLt9QCwO3W-Nd2wu72Q_QOd7Fph |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ISIT45174.2021.9517884 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781538682098 1538682095 |
| EndPage | 604 |
| ExternalDocumentID | 9517884 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: CCF-1948165 funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i203t-2d5f35b7ed7f70cfb4c63b47beccc7c7ed5a5fd2bbda19809054ac012549d6463 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701502200102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:38:49 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-2d5f35b7ed7f70cfb4c63b47beccc7c7ed5a5fd2bbda19809054ac012549d6463 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9517884 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-July-12 |
| PublicationDateYYYYMMDD | 2021-07-12 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-July-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 IEEE International Symposium on Information Theory (ISIT) |
| PublicationTitleAbbrev | ISIT |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7634883 |
| Snippet | The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 599 |
| SubjectTerms | Approximation algorithms Change detection algorithms Computational efficiency Information theory |
| Title | A Computationally Efficient Algorithm for Quickest Change Detection in Anonymous Heterogeneous Sensor Networks |
| URI | https://ieeexplore.ieee.org/document/9517884 |
| WOSCitedRecordID | wos000701502200102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MnlU38TQ4e7dY2adIch25sIGOyKbuNNkm1MDvZOsH_3pe0TAQv3trQX7zX8L3v5X15ALcJoqiKqfakzCKPISTglOKZp4IE0S2NjHbaqpdHMZnEi4WcNuBur4UxxrjiM9O1h24tX6_VzqbKehgNIGNjTWgKwSutVi36DXzZG8_Gc2Y3XkbWFwbd-uJfXVMcaAyP_ve6Y-j8qO_IdI8rJ9AwRRuKPqkaMNTJu9UXGbjdH_ARpL96XSPJf3snGIKSp12OU3Nbkko5QB5M6eqtCpIXZE_3ycgWwqzx_zH2bIZ0Fu-dVFXh2w48Dwfz-5FX90rw8tCnpRfqKKNRKowWmfBVljLFacqEdZESCsejJMp0mKY6CWTsSwzVEoXohPxQc8bpKbTwA8wZEMlozOME4z4jGPIbGQZcGkqVNQf69hza1lbLj2o7jGVtpou_hy_h0LrDpkOD8Apa5WZnruFAfZb5dnPjfPgNrEqg4Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFfSk0orf7sGjaZPsJps9Fm1psYZKq_RWkt1NDdRU2lTw3zubhIrgxVuy5IuZLG_e7LwdgNsIUVQGVFlCJJ7FEBJwSvmJJZ0I0S32tCq0Va9DHobBdCpGNbjbamG01kXxmW6Zw2ItXy3lxqTK2hgNIGNjO7DrMebapVqrkv06tmgPxoMJM1svI-9znVZ1-a--KQVs9A7_98IjaP7o78hoiyzHUNNZA7IOKVswVOm7xRfpFvs_4CNIZzFfIs1_eycYhJLnTYqTc52TUjtAHnReVFxlJM3IlvCTvimFWeIfpM3ZGAkt3huWdeHrJrz0upP7vlV1S7BS16a55SovoV7MteIJt2USM-nTmHHjJMkljnuRlyg3jlXkiMAWGKxFEvEJGaLymU9PoI4foE-BCEYDP4gw8tOcIcMRruMLTak05kDvnkHD2Gr2UW6IMavMdP738A3s9ydPw9lwED5ewIFxjUmOOu4l1PPVRl_BnvzM0_XquvDnNzUrpCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Symposium+on+Information+Theory+%28ISIT%29&rft.atitle=A+Computationally+Efficient+Algorithm+for+Quickest+Change+Detection+in+Anonymous+Heterogeneous+Sensor+Networks&rft.au=Sun%2C+Zhongchang&rft.au=Li%2C+Qunwei&rft.au=Zhang%2C+Ruizhi&rft.au=Zou%2C+Shaofeng&rft.date=2021-07-12&rft.pub=IEEE&rft.spage=599&rft.epage=604&rft_id=info:doi/10.1109%2FISIT45174.2021.9517884&rft.externalDocID=9517884 |