A Computationally Efficient Algorithm for Quickest Change Detection in Anonymous Heterogeneous Sensor Networks

The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups follow different data generating distributions. At some unknown time, an event occurs in the network and changes the data generating distribut...

Full description

Saved in:
Bibliographic Details
Published in:2021 IEEE International Symposium on Information Theory (ISIT) pp. 599 - 604
Main Authors: Sun, Zhongchang, Li, Qunwei, Zhang, Ruizhi, Zou, Shaofeng
Format: Conference Proceeding
Language:English
Published: IEEE 12.07.2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups follow different data generating distributions. At some unknown time, an event occurs in the network and changes the data generating distribution of the sensors. The goal is to detect the change as quickly as possible, subject to false alarm constraints. The anonymous setting is studied, where at each time step, the fusion center receives unordered samples without knowing which sensor each sample comes from, and thus does not know its exact distribution. In [1], an optimal algorithm was provided, which however is not computational efficient for large networks. In this paper, a computationally efficient test is proposed and a novel theoretical characterization of its false alarm rate is further developed.
AbstractList The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups follow different data generating distributions. At some unknown time, an event occurs in the network and changes the data generating distribution of the sensors. The goal is to detect the change as quickly as possible, subject to false alarm constraints. The anonymous setting is studied, where at each time step, the fusion center receives unordered samples without knowing which sensor each sample comes from, and thus does not know its exact distribution. In [1], an optimal algorithm was provided, which however is not computational efficient for large networks. In this paper, a computationally efficient test is proposed and a novel theoretical characterization of its false alarm rate is further developed.
Author Zhang, Ruizhi
Sun, Zhongchang
Zou, Shaofeng
Li, Qunwei
Author_xml – sequence: 1
  givenname: Zhongchang
  surname: Sun
  fullname: Sun, Zhongchang
  email: zhongcha@buffalo.edu
  organization: University at Buffalo, the State University of New York,Buffalo,NY,USA
– sequence: 2
  givenname: Qunwei
  surname: Li
  fullname: Li, Qunwei
  email: qunwei.qw@antfin.com
  organization: Ant Financial,China
– sequence: 3
  givenname: Ruizhi
  surname: Zhang
  fullname: Zhang, Ruizhi
  email: rzhang35@unl.edu
  organization: University of Nebraska-Lincoln,Lincoln,NE,USA
– sequence: 4
  givenname: Shaofeng
  surname: Zou
  fullname: Zou, Shaofeng
  email: szou3@buffalo.edu
  organization: University at Buffalo, the State University of New York,Buffalo,NY,USA
BookMark eNotUN1qwjAYzWC72JxPMBh5AV2SJk1yWTo3BdkYumtJ0y8abBNpI6Nvv4penR8458B5QvchBkDolZI5pUS_rTarLRdU8jkjjM71SJXid2iqpaIiU7liRKtHFApcxvZ0Tib5GEzTDHjhnLceQsJFs4-dT4cWu9jhn7O3R-gTLg8m7AG_QwJ7SWEfcDHuD20893g52l3cQ4CL2kDox-wXpL_YHftn9OBM08P0hhP0-7HYlsvZ-vtzVRbrmWckSzNWC5eJSkItnSTWVdzmWcVlBdZaaUdfGOFqVlW1oVoRTQQ3llAmuK5znmcT9HLt9QCwO3W-Nd2wu72Q_QOd7Fph
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISIT45174.2021.9517884
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538682098
1538682095
EndPage 604
ExternalDocumentID 9517884
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CCF-1948165
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-2d5f35b7ed7f70cfb4c63b47beccc7c7ed5a5fd2bbda19809054ac012549d6463
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701502200102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:49 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2d5f35b7ed7f70cfb4c63b47beccc7c7ed5a5fd2bbda19809054ac012549d6463
PageCount 6
ParticipantIDs ieee_primary_9517884
PublicationCentury 2000
PublicationDate 2021-July-12
PublicationDateYYYYMMDD 2021-07-12
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-July-12
  day: 12
PublicationDecade 2020
PublicationTitle 2021 IEEE International Symposium on Information Theory (ISIT)
PublicationTitleAbbrev ISIT
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7636948
Snippet The problem of quickest change detection in anonymous heterogeneous sensor networks is studied. The sensors are clustered into K groups, and different groups...
SourceID ieee
SourceType Publisher
StartPage 599
SubjectTerms Approximation algorithms
Change detection algorithms
Computational efficiency
Information theory
Title A Computationally Efficient Algorithm for Quickest Change Detection in Anonymous Heterogeneous Sensor Networks
URI https://ieeexplore.ieee.org/document/9517884
WOSCitedRecordID wos000701502200102&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCkBoy_04NHC1vXrexIFAIXggETbqRrX3UJDgPDxP_e127BmHjx1jZbu_Stee97fd97hNyjioRQKWBoysZMaMlZ2oeACSOjTMY6C7jyxSbkdNpfLtNZgzwcuDAA4IPPoOua_i7fbPTeucp6aA0gYhNN0pRSVlytmvQbBmlvMp8shEu8jKiPh9364V9VU7zSGJ38b7lT0vlh39HZQa-ckQYUbVIMaFWAoXberb_o0Gd_wCnoYP26QZD_9k7RBKXP-xyP5q6kFXOAPkHp460Kmhf0APfp2AXCbPD_AdebI5zFd6dVVPiuQ15Gw8XjmNW1EljOg6hk3MQ2ijMJRloZaJsJnUSZkE5EWmocj1VsDc8yo8K0H6RoqimN2gnxoUlEEp2TFn4AXBBqIUk0WCFwOhSeTi3nIFxeFwkKovCStN1erT6qdBirepuu_h6-JsdOHM4dGvIb0iq3e7glR_qzzHfbOy_Db4tbooE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRJZRN_mwcfzdamabM-Dt3YcJbJJuxttOlVC7OTrRP87720ZSL44lsS2qTkGu6-y313ALekItEOQ-RkyrpcaiW430GLy1g5kXJ1ZImwKDahgqAzm_njGtxtuTCIWASfYcs0i7v8eKk3xlXWJmuAEJvcgV1XSmGXbK2K9mtbfns4GU6lSb1MuE_YrerxX3VTCrXRP_zfgkfQ_OHfsfFWsxxDDbMGZF1WlmCo3HeLL9Yr8j_QFKy7eF0SzH97Z2SEsudNSodznbOSO8AeMC8irjKWZmwL-NnAhMIs6Q9C05sQoKV3gzIufN2El35vej_gVbUEngrLybmI3cRxI4WxSpSlk0hqz4mkMkLSStO4G7pJLKIoDm2_Y_lkrIWa9BMhxNiTnnMCdfoAPAWWoOdpTKSk6Uh82k-EQGkyuygM0bHPoGH2av5RJsSYV9t0_vfwDewPpk-j-WgYPF7AgRGNcY7a4hLq-WqDV7CnP_N0vbou5PkNJ_ylyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+IEEE+International+Symposium+on+Information+Theory+%28ISIT%29&rft.atitle=A+Computationally+Efficient+Algorithm+for+Quickest+Change+Detection+in+Anonymous+Heterogeneous+Sensor+Networks&rft.au=Sun%2C+Zhongchang&rft.au=Li%2C+Qunwei&rft.au=Zhang%2C+Ruizhi&rft.au=Zou%2C+Shaofeng&rft.date=2021-07-12&rft.pub=IEEE&rft.spage=599&rft.epage=604&rft_id=info:doi/10.1109%2FISIT45174.2021.9517884&rft.externalDocID=9517884