Neuro-Control for Continuous-Time Stochastic Nonlinear Systems via Online Policy Iteration Algorithm
This paper is concerned with the neuro-control for continuous-time nonlinear systems subject to stochastic disturbance. Due to the stochastic disturbance, the traditional value function in existing literature cannot meet the stochastic control problems, since mixed second partial derivatives are emp...
Saved in:
| Published in: | Chinese Control and Decision Conference pp. 1499 - 1503 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.08.2020
|
| Subjects: | |
| ISSN: | 1948-9447 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper is concerned with the neuro-control for continuous-time nonlinear systems subject to stochastic disturbance. Due to the stochastic disturbance, the traditional value function in existing literature cannot meet the stochastic control problems, since mixed second partial derivatives are employed to construct modified value function of conditional expectation. To solve the Hamilton-Jacobi-Bellman equation, a novel online policy iteration algorithm with an Ito correction term is developed with establishing a critic neural network to approximate the optimal value function.ˆ Thus, the online optimal control can be obtained in a closed-loop form. The closed-loop system is guaranteed to be stable in probability via Lyapunov's direct method. Finally, numerical example is provided to illustrate the effectiveness of the developed control method. |
|---|---|
| AbstractList | This paper is concerned with the neuro-control for continuous-time nonlinear systems subject to stochastic disturbance. Due to the stochastic disturbance, the traditional value function in existing literature cannot meet the stochastic control problems, since mixed second partial derivatives are employed to construct modified value function of conditional expectation. To solve the Hamilton-Jacobi-Bellman equation, a novel online policy iteration algorithm with an Ito correction term is developed with establishing a critic neural network to approximate the optimal value function.ˆ Thus, the online optimal control can be obtained in a closed-loop form. The closed-loop system is guaranteed to be stable in probability via Lyapunov's direct method. Finally, numerical example is provided to illustrate the effectiveness of the developed control method. |
| Author | Zhou, Tianmin Li, Handong Hou, Jiaxu Di, Zengru Zhao, Bo |
| Author_xml | – sequence: 1 givenname: Tianmin surname: Zhou fullname: Zhou, Tianmin organization: Beijing Normal University,School of Systems Science,Beijing,China,100875 – sequence: 2 givenname: Jiaxu surname: Hou fullname: Hou, Jiaxu organization: Beijing Normal University,School of Systems Science,Beijing,China,100875 – sequence: 3 givenname: Handong surname: Li fullname: Li, Handong organization: Beijing Normal University,School of Systems Science,Beijing,China,100875 – sequence: 4 givenname: Zengru surname: Di fullname: Di, Zengru organization: Beijing Normal University,School of Systems Science,Beijing,China,100875 – sequence: 5 givenname: Bo surname: Zhao fullname: Zhao, Bo organization: Beijing Normal University,School of Systems Science,Beijing,China,100875 |
| BookMark | eNotkMtKAzEYRqMo2NY-gSB5gam5zCSTZRlvhdIKreuSSf6xkZlEkozQtxe1q-9wFmfxTdGVDx4QuqdkQSlRD03z2JSKM7VghJGFoqKUUl6guZI1laymVV1V4hJNqCrrQpWlvEHTlD4JEYITMkF2A2MMRRN8jqHHXYj4l50fw5iKvRsA73IwR52yM3gTfO886Ih3p5RhSPjbabz9k_gt9M6c8CpD1NkFj5f9R4guH4dbdN3pPsH8vDP0_vy0b16L9fZl1SzXhWOE54K1tbLWAu3KiktLjBEdSKpqQUQrFOmYAGmFZpKDaNtKM0uZMmCs4mVXdXyG7v67DgAOX9ENOp4O51P4D98tWrY |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC49329.2020.9164777 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728158556 1728158540 1728158559 9781728158549 |
| EISSN | 1948-9447 |
| EndPage | 1503 |
| ExternalDocumentID | 9164777 |
| Genre | orig-research |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i203t-2b89ddde1f4537d0cc6fe7198606b690f26e7d6a273e6bb5a2d129cecd934f5f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621616901105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:33:55 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-2b89ddde1f4537d0cc6fe7198606b690f26e7d6a273e6bb5a2d129cecd934f5f3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9164777 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Aug. |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-Aug. |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.7298181 |
| Snippet | This paper is concerned with the neuro-control for continuous-time nonlinear systems subject to stochastic disturbance. Due to the stochastic disturbance, the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1499 |
| SubjectTerms | Adaptive Dynamic Programming Approximation algorithms Artificial neural networks Mathematical model Nonlinear systems Optimal control Policy Iteration Reinforcement Learning Stochastic Nonlinear Stochastic processes Stochastic systems |
| Title | Neuro-Control for Continuous-Time Stochastic Nonlinear Systems via Online Policy Iteration Algorithm |
| URI | https://ieeexplore.ieee.org/document/9164777 |
| WOSCitedRecordID | wos000621616901105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LS8MwHMfDHB704mMT3-Tg0W5JH0lzlOrQyxiosNvI4xdX0FZqt7_fpK1TwYu3UAiB_OD3aH7fzw-hKy2YJsrPCKNekkPA-UGIdaCFYopaITnRzbAJPp2m87mY9dD1RgsDAE3zGYz8snnLN6Ve-V9lY-HhV5xvoS3OWavV-vK6zKOjOgUwJWKcZbdZ7HITr0UJyajb-WuEShNBJnv_O3sfDb-leHi2CTIHqAfFIdr9QREcINMANoKsbTrHLgvFfp0XK1fVB17jgR_rUi-lRzLjacvGkBXuYOV4nUvcEkdxSwnGDw1q2VkM37y-lFVeL9-G6Hly95TdB93whCAPSVQHoUqFcb6L2jiJuCFaMwucitRVLMqVxDZkwA2TLn0BplQiQ-NCvwZtRBTbxEZHqF-UBRwjDEoRyyGJNYM40kIm0lBNqeFcW2LSEzTw97V4b_kYi-6qTv_-fIZ2vEnaJrpz1K-rFVygbb2u84_qsjHqJ-6-phw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS8MwFMfDnIL64mUT7-bBR7ulbZo0j1IdG84ycMLeRm51BW2ldvv8Jm2dCr74FgohkAPn0pz_7wBwLRmRSNgZYa6V5CBt_KDG0pFMEOEmjFMkq2ETNI7D2YxNWuBmrYXRWlfNZ7pnl9Vbvsrl0v4q6zMLv6J0A2wGGHuoVmt9-V1i4VGNBthFrB9FdxE22YlVo3io1-z9NUSliiGDvf-dvg-632I8OFmHmQPQ0tkh2P3BEewAVSE2nKhuO4cmD4V2nWZLU9c7VuUBn8pcLriFMsO4pmPwAja4crhKOayZo7DmBMNRBVs2NoO3ry95kZaLty54HtxPo6HTjE9wUg_5peOJkCnjvdwEBz5VSEqSaOqy0NQswhTFiUc0VYSbBEYTIQLuKRP8pZaK-TgJEv8ItLM808cAaiFQQnWAJdHYl4wHXLnSdRWlMkEqPAEde1_z95qQMW-u6vTvz1dgezh9HM_Ho_jhDOxY89QtdeegXRZLfQG25KpMP4rLysCfvUCpYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Neuro-Control+for+Continuous-Time+Stochastic+Nonlinear+Systems+via+Online+Policy+Iteration+Algorithm&rft.au=Zhou%2C+Tianmin&rft.au=Hou%2C+Jiaxu&rft.au=Li%2C+Handong&rft.au=Di%2C+Zengru&rft.date=2020-08-01&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=1499&rft.epage=1503&rft_id=info:doi/10.1109%2FCCDC49329.2020.9164777&rft.externalDocID=9164777 |