Cross-Technology Interference Mitigation Using Fully Convolutional Denoising Autoencoders
Cross-Technology Interference (CTI) is one of the major issues that hinder WiFi networks from achieving full spectrum utilization. Interference from nearby ZigBee devices, LTE-U UEs or even microwave ovens could emit RF signals over the frequency partially overlapping with the WiFi band. To combat s...
Gespeichert in:
| Veröffentlicht in: | IEEE Global Communications Conference (Online) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2020
|
| Schlagworte: | |
| ISSN: | 2576-6813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cross-Technology Interference (CTI) is one of the major issues that hinder WiFi networks from achieving full spectrum utilization. Interference from nearby ZigBee devices, LTE-U UEs or even microwave ovens could emit RF signals over the frequency partially overlapping with the WiFi band. To combat such CTI, existing solutions have proposed several signal processing algorithms for error recovery or interference cancellation. However, most of those approaches need knowledge about the physical layer structure of CTI, which cannot be applied to denoise the unstructured interference from unknown electronics, e.g., microwave ovens. To overcome this deficiency, we present a CTI suppression framework based on Denoising AutoEncoder (DAE). The DAE is developed to learn the patterns of interference with unknown structures and passively suppress CTI with the zero cost. To avoid the expansive human cost of data collection, we propose a systematic way to synthesize corrupted WiFi signals for model training. Our experiments verify that the model trained with synthesized data can effectively reconstruct real corrupted WiFi signals and improve the decoding success probability. |
|---|---|
| AbstractList | Cross-Technology Interference (CTI) is one of the major issues that hinder WiFi networks from achieving full spectrum utilization. Interference from nearby ZigBee devices, LTE-U UEs or even microwave ovens could emit RF signals over the frequency partially overlapping with the WiFi band. To combat such CTI, existing solutions have proposed several signal processing algorithms for error recovery or interference cancellation. However, most of those approaches need knowledge about the physical layer structure of CTI, which cannot be applied to denoise the unstructured interference from unknown electronics, e.g., microwave ovens. To overcome this deficiency, we present a CTI suppression framework based on Denoising AutoEncoder (DAE). The DAE is developed to learn the patterns of interference with unknown structures and passively suppress CTI with the zero cost. To avoid the expansive human cost of data collection, we propose a systematic way to synthesize corrupted WiFi signals for model training. Our experiments verify that the model trained with synthesized data can effectively reconstruct real corrupted WiFi signals and improve the decoding success probability. |
| Author | Lee, Chi-Cheng Lin, Kate Ching-Ju Tsao, Yu Lin, Chi-Lun |
| Author_xml | – sequence: 1 givenname: Chi-Lun surname: Lin fullname: Lin, Chi-Lun email: lin0630.cs05@nctu.edu.tw organization: National Chiao Tung University,Department of Computer Science,Hsinchu,Taiwan – sequence: 2 givenname: Kate Ching-Ju surname: Lin fullname: Lin, Kate Ching-Ju email: katelin@cs.nctu.edu.tw organization: National Chiao Tung University,Department of Computer Science,Hsinchu,Taiwan – sequence: 3 givenname: Chi-Cheng surname: Lee fullname: Lee, Chi-Cheng email: changlee@mail.iis.sinica.edu.tw organization: Research Center for Information Technology Innovation, Academia Sinica,Taipei,Taiwan – sequence: 4 givenname: Yu surname: Tsao fullname: Tsao, Yu email: yu.tsao@citi.sinica.edu.tw organization: Research Center for Information Technology Innovation, Academia Sinica,Taipei,Taiwan |
| BookMark | eNotkMFOwkAURUejiYh8gZvGffHNm7a8WWIFJClhgwtXZNp54Jg6YzrFhL8XldVNzs25i3srrnzwLMSDhLGUoB8X1fppVq5XGQLgGAFhrBWiyuBCjPSE5ARJEmqiSzHAfFKkBUl1I0YxfsBJyaVCDQPxVnYhxnTDzbsPbdgfk6Xvudtxx77hZOV6tze9Cz55jc7vk_mhbY9JGfx3aA-_3LTJM_vg_trpoQ8nL1ju4p243pk28uicQ7GZzzblS1qtF8tyWqUOQfUp1jkXRltbKIK6sXZnjSHb1FI3BI3OmIgAa2AwKIl0XeQ6z2sENqrI1FDc_886Zt5-de7TdMft-Qv1A5-4WE8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/GLOBECOM42002.2020.9322340 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781728182988 1728182980 |
| EISSN | 2576-6813 |
| EndPage | 6 |
| ExternalDocumentID | 9322340 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-2b5e6a9dd6380bcddfdaa8dcb19c80c94e88802b0e0a21889b65955b20ea3643 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668970501131&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 05:43:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-2b5e6a9dd6380bcddfdaa8dcb19c80c94e88802b0e0a21889b65955b20ea3643 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9322340 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Dec. |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Global Communications Conference (Online) |
| PublicationTitleAbbrev | GLOCOM |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002513290 |
| Score | 1.7759712 |
| Snippet | Cross-Technology Interference (CTI) is one of the major issues that hinder WiFi networks from achieving full spectrum utilization. Interference from nearby... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | autoencoder cross-technology interference denoising Gallium nitride Generators Interference interference suppression Microwave imaging Noise reduction Training Wireless fidelity |
| Title | Cross-Technology Interference Mitigation Using Fully Convolutional Denoising Autoencoders |
| URI | https://ieeexplore.ieee.org/document/9322340 |
| WOSCitedRecordID | wos000668970501131&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQALjxbxVgZG3Dp2Xh6htDD0NVSoTJUfFykSSlBJK_HvsZ20BYmFzTorp8jn6PNdvvuM0J0JasQUl9j3ZYqDgCgsgAJmIZMqYikPXPvY6zAej5P5nE8b6H7bCwMAjnwGHTt0__J1oVa2VNY1Zw3KApOg78VxVPVqbespBqcZ5RtdUZ_w7vNw8tjvTUaB5SGYTJCSTu3g100qDkgGR_97hWPU3nXkedMt1pygBuSn6PCHmGALvfUs4OFdrdxz1b7N06OsUtMocs_RBDybfH55xv-63n3i3XuCvMjc7MOqLKzGpeU5t9Fs0J_1XnB9cQLOKGElpjKESHCtzcdFpNI61UIkWkmfq4QoHoDJewmVBIgwEJ9waVUFQ0kJCGaOKGeomRc5nCNPx2EsGYRSKGOnxnEoIqWp0oIkqR9foJZdo8VHJY2xqJfn8m_zFTqwYajYINeoWS5XcIP21brMPpe3Lp7f4Kai5Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5DBfXFyybe7YOPZkuTtGsedW5O7C4PQ-bTyK1QkFZmN_Dfm6TdpuCLb-GEHkpOypdz-p0vANyaoIZEMgF9XySQUiQh11hDEhAhQ5Iw6trHXuP2cBhNp2xcA3frXhittSOf6aYdun_5KpcLWyprmbMGJtQk6NsBpRiV3VrriopBaoLZSlnUR6z1FI8eup3RgFomgskFMWpWLn7dpeKgpHfwv5c4BI1NT543XqPNEajp7Bjs_5ATrIO3joU8uKmWe67et3p6kJZ6GnnmOaKAZ9PPL8_4X1b7j797jzrLUzd7vyhyq3Jpmc4NMOl1J50-rK5OgClGpIBYBDrkTCnzeSEhlUoU55GSwmcyQpJRbTJfhAXSiBuQj5iwuoKBwEhzYg4pJ2AryzN9CjzVDtqC6EBwaezYOA54KBWWiqMo8dtnoG7XaPZRimPMquU5_9t8A3b7k0E8i5-HLxdgz4ak5IZcgq1ivtBXYEcui_Rzfu1i-w2GeaYs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Global+Communications+Conference+%28Online%29&rft.atitle=Cross-Technology+Interference+Mitigation+Using+Fully+Convolutional+Denoising+Autoencoders&rft.au=Lin%2C+Chi-Lun&rft.au=Lin%2C+Kate+Ching-Ju&rft.au=Lee%2C+Chi-Cheng&rft.au=Tsao%2C+Yu&rft.date=2020-12-01&rft.pub=IEEE&rft.eissn=2576-6813&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGLOBECOM42002.2020.9322340&rft.externalDocID=9322340 |