Performance Evaluation of Pattern Recognition Algorithms for Upper Limb Prosthetic Applications

Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb amputees in the execution of daily life activities. In this scenario, the control system consists in a pattern recognition algorithm translating t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics S. 471 - 476
Hauptverfasser: Marinelli, A., Semprini, M., Canepa, M., Lombardi, L., Stedman, S., Bellingegni, A. Dellacasa, Chiappalone, M., Laffranchi, M., Gruppioni, E., Michieli, L. De, Boccardo, N.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2020
ISSN:2155-1782
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb amputees in the execution of daily life activities. In this scenario, the control system consists in a pattern recognition algorithm translating the recorded electromyographic (EMG) activity into joint movements. However, the low decoding performance typically reached by the control system results in poor stability of the prosthetic device. In order to solve this issue, here we tested several state-of-the-art classifiers for decoding multi-joint hand movements from electromyographic recordings of arm muscles, collected from healthy subjects. Specifically, we tested: NonLinear Logistic Regression (NLR), Regularized Least-Square, Artificial Neural Network, Support Vector Machine, and Linear Discriminant Analysis. We aimed at minimizing the number of EMG electrodes (6 maximum) by optimizing each classifier in terms of the F1Score, and then we compared the performance of the classifiers. We found that the NLR algorithm achieved the best results with only 3 EMG electrodes. The optimized algorithms were then tested on three right arm amputees controlling a virtual hand. We obtained that algorithm's performance was comparable with that obtained from healthy subjects. In particular, the NLR classifier achieved 99% correct classification for all the patients, indicating its potential effective use in prosthetic applications.
AbstractList Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb amputees in the execution of daily life activities. In this scenario, the control system consists in a pattern recognition algorithm translating the recorded electromyographic (EMG) activity into joint movements. However, the low decoding performance typically reached by the control system results in poor stability of the prosthetic device. In order to solve this issue, here we tested several state-of-the-art classifiers for decoding multi-joint hand movements from electromyographic recordings of arm muscles, collected from healthy subjects. Specifically, we tested: NonLinear Logistic Regression (NLR), Regularized Least-Square, Artificial Neural Network, Support Vector Machine, and Linear Discriminant Analysis. We aimed at minimizing the number of EMG electrodes (6 maximum) by optimizing each classifier in terms of the F1Score, and then we compared the performance of the classifiers. We found that the NLR algorithm achieved the best results with only 3 EMG electrodes. The optimized algorithms were then tested on three right arm amputees controlling a virtual hand. We obtained that algorithm's performance was comparable with that obtained from healthy subjects. In particular, the NLR classifier achieved 99% correct classification for all the patients, indicating its potential effective use in prosthetic applications.
Author Michieli, L. De
Semprini, M.
Gruppioni, E.
Lombardi, L.
Laffranchi, M.
Stedman, S.
Canepa, M.
Bellingegni, A. Dellacasa
Boccardo, N.
Marinelli, A.
Chiappalone, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Marinelli
  fullname: Marinelli, A.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 2
  givenname: M.
  surname: Semprini
  fullname: Semprini, M.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 3
  givenname: M.
  surname: Canepa
  fullname: Canepa, M.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 4
  givenname: L.
  surname: Lombardi
  fullname: Lombardi, L.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 5
  givenname: S.
  surname: Stedman
  fullname: Stedman, S.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 6
  givenname: A. Dellacasa
  surname: Bellingegni
  fullname: Bellingegni, A. Dellacasa
  organization: Prosthetic Centre INAIL, Vigorso di Budrio,Bologna,Italy,40054
– sequence: 7
  givenname: M.
  surname: Chiappalone
  fullname: Chiappalone, M.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 8
  givenname: M.
  surname: Laffranchi
  fullname: Laffranchi, M.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 9
  givenname: E.
  surname: Gruppioni
  fullname: Gruppioni, E.
  organization: Prosthetic Centre INAIL, Vigorso di Budrio,Bologna,Italy,40054
– sequence: 10
  givenname: L. De
  surname: Michieli
  fullname: Michieli, L. De
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
– sequence: 11
  givenname: N.
  surname: Boccardo
  fullname: Boccardo, N.
  organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163
BookMark eNotkM1KAzEUhaMoaGufwE1eYOq9mWQyWdZSf6BgKXZdkkzSRmYmQyYKvr2ldnMOHPi-xZmQmz72jhCKMEcE9fQc4jYarhBxzoDBXDHGeVVdkQlKVqNQIMU1uWcoRIGyZndkNo5fAIBQnxLuyX7jko-p0711dPWj22-dQ-xp9HSjc3app1tn46EP53nRHmIK-diN9ETR3TC4RNehM3ST4piPLgdLF8PQBnv2jA_k1ut2dLNLT8nuZfW5fCvWH6_vy8W6CAzKXLDKmBIseIFSaA9Oc91A46VuuMemqqRBtMowzxtmwGrHpay900prLxQrp-Tx3xucc_shhU6n3_3lj_IPOJVaeQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioRob49111.2020.9224466
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728159075
9781728159072
EISSN 2155-1782
EndPage 476
ExternalDocumentID 9224466
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i203t-26bb30c0f5175af0ea4ad0df7ad4f1d667b11c9b2f4d2b0cae4778fea9aaf5923
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636920600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:30:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-26bb30c0f5175af0ea4ad0df7ad4f1d667b11c9b2f4d2b0cae4778fea9aaf5923
PageCount 6
ParticipantIDs ieee_primary_9224466
PublicationCentury 2000
PublicationDate 2020-Nov.
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
PublicationTitleAbbrev BioRob
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001080000
Score 1.8228502
Snippet Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb...
SourceID ieee
SourceType Publisher
StartPage 471
Title Performance Evaluation of Pattern Recognition Algorithms for Upper Limb Prosthetic Applications
URI https://ieeexplore.ieee.org/document/9224466
WOSCitedRecordID wos000636920600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPbSXPrT0TQ49djW7xmRztEXpocgiFbxJHpN2oe7Kuvb3N1mfhV56CwMhIQ_mm2S-bxB6dJCdAcQiiHtWB9Rh5EBoGwfaxIJaxa0GWxWb4KNRPJ2KpIaedlwYAKiSz6Dtm9Vfvsn1yj-VdYTzN5SxOqpzztZcrf17ioc-hGyTdYjoPKf5OFfU32YXB0akven-q45K5UaGp_-bwBlq7fl4ONl5mnNUg-wCnRxICTbRLNkzAPBgJ-GNc4uTSkIzw-NtrpAz978-8iItP-dL7HrhyWIBBX5L58qPs3Sg0J0n3D_43G6hyXDw_vIabIonBGlEumUQMaW6RBPbcwBBWgKSSkOM5dJQGxrGuApDLVRkqYkU0RIo57EFKaS0PQf7LlEjyzO4QtgYF0Qa5SmoIZVerUYQA5RQ7eKNrlbXqOmXarZY62PMNqt087f5Fh373Vjz-e5QoyxWcI-O9HeZLouHalN_AOsapeQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFH5BNFEvLmDc7cGjA52hs_SIBoIRCSGQcCNddRKZIcPg77cdVhMv3pomXdIl73vt-74H8Ggge6BURJ3I18IhBiM7VOjIETKiRPNQC6WLZBNhrxeNx7RfgqcNF0YpVQSfqZotFn_5MhUL-1RWp8bekCDYg32fEA8v2VrbFxULfjBeh-tgWn-O00HKib3PxhP0cG3Vwa9MKoUhaZ_8bwqnUN0y8lB_Y2vOoKSSczjeEROswKS_5QCg1kbEG6Ua9QsRzQQN1tFCprr59ZFmcf45nSPTCo1mM5Whbjzldpy5gYXmRKHmzvd2FUbt1vCl46zSJzixhxu54wWcN7DA2jcQgWmsGGESSx0ySbQrgyDkriso9zSRHseCKRKGkVaMMqZ9A_wuoJykiboEJKVxIyW3JFSXMKtXQ7FUBBNhPI6G4FdQsUs1mS0VMiarVbr-u_oBDjvD9-6k-9p7u4EjuzNLdt8tlPNsoe7gQHzn8Ty7Lzb4B7hKqSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRAS-EMBS+International+Conference+on+Biomedical+Robotics+and+Biomechatronics&rft.atitle=Performance+Evaluation+of+Pattern+Recognition+Algorithms+for+Upper+Limb+Prosthetic+Applications&rft.au=Marinelli%2C+A.&rft.au=Semprini%2C+M.&rft.au=Canepa%2C+M.&rft.au=Lombardi%2C+L.&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2155-1782&rft.spage=471&rft.epage=476&rft_id=info:doi/10.1109%2FBioRob49111.2020.9224466&rft.externalDocID=9224466