Performance Evaluation of Pattern Recognition Algorithms for Upper Limb Prosthetic Applications
Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb amputees in the execution of daily life activities. In this scenario, the control system consists in a pattern recognition algorithm translating t...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics S. 471 - 476 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2020
|
| ISSN: | 2155-1782 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb amputees in the execution of daily life activities. In this scenario, the control system consists in a pattern recognition algorithm translating the recorded electromyographic (EMG) activity into joint movements. However, the low decoding performance typically reached by the control system results in poor stability of the prosthetic device. In order to solve this issue, here we tested several state-of-the-art classifiers for decoding multi-joint hand movements from electromyographic recordings of arm muscles, collected from healthy subjects. Specifically, we tested: NonLinear Logistic Regression (NLR), Regularized Least-Square, Artificial Neural Network, Support Vector Machine, and Linear Discriminant Analysis. We aimed at minimizing the number of EMG electrodes (6 maximum) by optimizing each classifier in terms of the F1Score, and then we compared the performance of the classifiers. We found that the NLR algorithm achieved the best results with only 3 EMG electrodes. The optimized algorithms were then tested on three right arm amputees controlling a virtual hand. We obtained that algorithm's performance was comparable with that obtained from healthy subjects. In particular, the NLR classifier achieved 99% correct classification for all the patients, indicating its potential effective use in prosthetic applications. |
|---|---|
| AbstractList | Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb amputees in the execution of daily life activities. In this scenario, the control system consists in a pattern recognition algorithm translating the recorded electromyographic (EMG) activity into joint movements. However, the low decoding performance typically reached by the control system results in poor stability of the prosthetic device. In order to solve this issue, here we tested several state-of-the-art classifiers for decoding multi-joint hand movements from electromyographic recordings of arm muscles, collected from healthy subjects. Specifically, we tested: NonLinear Logistic Regression (NLR), Regularized Least-Square, Artificial Neural Network, Support Vector Machine, and Linear Discriminant Analysis. We aimed at minimizing the number of EMG electrodes (6 maximum) by optimizing each classifier in terms of the F1Score, and then we compared the performance of the classifiers. We found that the NLR algorithm achieved the best results with only 3 EMG electrodes. The optimized algorithms were then tested on three right arm amputees controlling a virtual hand. We obtained that algorithm's performance was comparable with that obtained from healthy subjects. In particular, the NLR classifier achieved 99% correct classification for all the patients, indicating its potential effective use in prosthetic applications. |
| Author | Michieli, L. De Semprini, M. Gruppioni, E. Lombardi, L. Laffranchi, M. Stedman, S. Canepa, M. Bellingegni, A. Dellacasa Boccardo, N. Marinelli, A. Chiappalone, M. |
| Author_xml | – sequence: 1 givenname: A. surname: Marinelli fullname: Marinelli, A. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 2 givenname: M. surname: Semprini fullname: Semprini, M. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 3 givenname: M. surname: Canepa fullname: Canepa, M. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 4 givenname: L. surname: Lombardi fullname: Lombardi, L. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 5 givenname: S. surname: Stedman fullname: Stedman, S. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 6 givenname: A. Dellacasa surname: Bellingegni fullname: Bellingegni, A. Dellacasa organization: Prosthetic Centre INAIL, Vigorso di Budrio,Bologna,Italy,40054 – sequence: 7 givenname: M. surname: Chiappalone fullname: Chiappalone, M. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 8 givenname: M. surname: Laffranchi fullname: Laffranchi, M. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 9 givenname: E. surname: Gruppioni fullname: Gruppioni, E. organization: Prosthetic Centre INAIL, Vigorso di Budrio,Bologna,Italy,40054 – sequence: 10 givenname: L. De surname: Michieli fullname: Michieli, L. De organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 – sequence: 11 givenname: N. surname: Boccardo fullname: Boccardo, N. organization: Rehab Technologies IIT-INAL Lab, Istituto Italiano di Tecnologia,Genova,Italy,16163 |
| BookMark | eNotkM1KAzEUhaMoaGufwE1eYOq9mWQyWdZSf6BgKXZdkkzSRmYmQyYKvr2ldnMOHPi-xZmQmz72jhCKMEcE9fQc4jYarhBxzoDBXDHGeVVdkQlKVqNQIMU1uWcoRIGyZndkNo5fAIBQnxLuyX7jko-p0711dPWj22-dQ-xp9HSjc3app1tn46EP53nRHmIK-diN9ETR3TC4RNehM3ST4piPLgdLF8PQBnv2jA_k1ut2dLNLT8nuZfW5fCvWH6_vy8W6CAzKXLDKmBIseIFSaA9Oc91A46VuuMemqqRBtMowzxtmwGrHpay900prLxQrp-Tx3xucc_shhU6n3_3lj_IPOJVaeQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BioRob49111.2020.9224466 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1728159075 9781728159072 |
| EISSN | 2155-1782 |
| EndPage | 476 |
| ExternalDocumentID | 9224466 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i203t-26bb30c0f5175af0ea4ad0df7ad4f1d667b11c9b2f4d2b0cae4778fea9aaf5923 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636920600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:30:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-26bb30c0f5175af0ea4ad0df7ad4f1d667b11c9b2f4d2b0cae4778fea9aaf5923 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9224466 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov. |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov. |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics |
| PublicationTitleAbbrev | BioRob |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001080000 |
| Score | 1.8228502 |
| Snippet | Poly-articulated, myoelectric hand prostheses reproduce complex multi-degree of freedom movements, which are fundamental to effectively assist upper limb... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 471 |
| Title | Performance Evaluation of Pattern Recognition Algorithms for Upper Limb Prosthetic Applications |
| URI | https://ieeexplore.ieee.org/document/9224466 |
| WOSCitedRecordID | wos000636920600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qPbSXPrT0TQ49djW7xmRztEXpocgiFbxJHpN2oe7Kuvb3N1mfhV56CwMhIQ_mm2S-bxB6dJCdAcQiiHtWB9Rh5EBoGwfaxIJaxa0GWxWb4KNRPJ2KpIaedlwYAKiSz6Dtm9Vfvsn1yj-VdYTzN5SxOqpzztZcrf17ioc-hGyTdYjoPKf5OFfU32YXB0akven-q45K5UaGp_-bwBlq7fl4ONl5mnNUg-wCnRxICTbRLNkzAPBgJ-GNc4uTSkIzw-NtrpAz978-8iItP-dL7HrhyWIBBX5L58qPs3Sg0J0n3D_43G6hyXDw_vIabIonBGlEumUQMaW6RBPbcwBBWgKSSkOM5dJQGxrGuApDLVRkqYkU0RIo57EFKaS0PQf7LlEjyzO4QtgYF0Qa5SmoIZVerUYQA5RQ7eKNrlbXqOmXarZY62PMNqt087f5Fh373Vjz-e5QoyxWcI-O9HeZLouHalN_AOsapeQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFH5BNFEvLmDc7cGjA52hs_SIBoIRCSGQcCNddRKZIcPg77cdVhMv3pomXdIl73vt-74H8Ggge6BURJ3I18IhBiM7VOjIETKiRPNQC6WLZBNhrxeNx7RfgqcNF0YpVQSfqZotFn_5MhUL-1RWp8bekCDYg32fEA8v2VrbFxULfjBeh-tgWn-O00HKib3PxhP0cG3Vwa9MKoUhaZ_8bwqnUN0y8lB_Y2vOoKSSczjeEROswKS_5QCg1kbEG6Ua9QsRzQQN1tFCprr59ZFmcf45nSPTCo1mM5Whbjzldpy5gYXmRKHmzvd2FUbt1vCl46zSJzixhxu54wWcN7DA2jcQgWmsGGESSx0ySbQrgyDkriso9zSRHseCKRKGkVaMMqZ9A_wuoJykiboEJKVxIyW3JFSXMKtXQ7FUBBNhPI6G4FdQsUs1mS0VMiarVbr-u_oBDjvD9-6k-9p7u4EjuzNLdt8tlPNsoe7gQHzn8Ty7Lzb4B7hKqSs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE%2FRAS-EMBS+International+Conference+on+Biomedical+Robotics+and+Biomechatronics&rft.atitle=Performance+Evaluation+of+Pattern+Recognition+Algorithms+for+Upper+Limb+Prosthetic+Applications&rft.au=Marinelli%2C+A.&rft.au=Semprini%2C+M.&rft.au=Canepa%2C+M.&rft.au=Lombardi%2C+L.&rft.date=2020-11-01&rft.pub=IEEE&rft.eissn=2155-1782&rft.spage=471&rft.epage=476&rft_id=info:doi/10.1109%2FBioRob49111.2020.9224466&rft.externalDocID=9224466 |