Objective Image Quality Analysis of Convolutional Neural Network Light Field Coding
Light field digital images are novel image modalities for capturing a sampled representation of the plenoptic function. A large amount of data is typically associated to a single sample of a scene, and data compression tools are required in order to develop systems and applications for light field c...
Uloženo v:
| Vydáno v: | European Workshop on Visual Information Processing s. 163 - 168 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2019
|
| Témata: | |
| ISSN: | 2471-8963 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Light field digital images are novel image modalities for capturing a sampled representation of the plenoptic function. A large amount of data is typically associated to a single sample of a scene, and data compression tools are required in order to develop systems and applications for light field communications. This paper presents the study of the performance of a convolutional neural network autoencoder as a tool for digital light field image compression. Testing conditions and a framework for the experimental evaluation are proposed for this study. Different encoders and coding conditions are taken into consideration, obtained results are reported and critically discussed. |
|---|---|
| ISSN: | 2471-8963 |
| DOI: | 10.1109/EUVIP47703.2019.8946230 |