Explainable AI for Early Detection of Health Changes Via Streaming Clustering

The ability to explain the predictions of machine learning models has become increasingly important, especially in healthcare applications. Streaming clustering is an effective tool to recognize normal baseline patterns and to detect early signs of changes in data streams. However, many streaming cl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Fuzzy Systems conference proceedings s. 1 - 6
Hlavní autoři: Wu, Wenlong, Keller, James M., Skubic, Marjorie, Popescu, Mihail
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 18.07.2022
Témata:
ISSN:1558-4739
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ability to explain the predictions of machine learning models has become increasingly important, especially in healthcare applications. Streaming clustering is an effective tool to recognize normal baseline patterns and to detect early signs of changes in data streams. However, many streaming clustering algorithms are not designed to explain to the users how predictions are made. In this paper, we extend a streaming clustering algorithm, the sequential possibilistic Gaussian mixture model (SPGMM) for early detection of health change to provide algorithm explainability for the results. Four approaches are discussed to explain either the cluster differences or the reason for the algorithm warnings: (i) linguistic summarization for warnings; (ii) annotation distribution of clusters; (iii) SHapley Additive exPlanations (SHAP); (iv) functional health score. The four approaches are validated on one older adult monitored with a collection of motion, bed, and depth sensors over three years. The results obtained on the older adult show that the four approaches aid understanding of how the clusters and warnings are generated, providing strong support for clinicians to take corresponding actions.
AbstractList The ability to explain the predictions of machine learning models has become increasingly important, especially in healthcare applications. Streaming clustering is an effective tool to recognize normal baseline patterns and to detect early signs of changes in data streams. However, many streaming clustering algorithms are not designed to explain to the users how predictions are made. In this paper, we extend a streaming clustering algorithm, the sequential possibilistic Gaussian mixture model (SPGMM) for early detection of health change to provide algorithm explainability for the results. Four approaches are discussed to explain either the cluster differences or the reason for the algorithm warnings: (i) linguistic summarization for warnings; (ii) annotation distribution of clusters; (iii) SHapley Additive exPlanations (SHAP); (iv) functional health score. The four approaches are validated on one older adult monitored with a collection of motion, bed, and depth sensors over three years. The results obtained on the older adult show that the four approaches aid understanding of how the clusters and warnings are generated, providing strong support for clinicians to take corresponding actions.
Author Wu, Wenlong
Popescu, Mihail
Skubic, Marjorie
Keller, James M.
Author_xml – sequence: 1
  givenname: Wenlong
  surname: Wu
  fullname: Wu, Wenlong
  email: ww6p9@mail.missouri.edu
  organization: University of Missouri-Columbia,Electrical Engineering and Computer Science Department,Columbia,MO,USA,65211
– sequence: 2
  givenname: James M.
  surname: Keller
  fullname: Keller, James M.
  organization: University of Missouri-Columbia,Electrical Engineering and Computer Science Department,Columbia,MO,USA,65211
– sequence: 3
  givenname: Marjorie
  surname: Skubic
  fullname: Skubic, Marjorie
  organization: University of Missouri-Columbia,Electrical Engineering and Computer Science Department,Columbia,MO,USA,65211
– sequence: 4
  givenname: Mihail
  surname: Popescu
  fullname: Popescu, Mihail
  organization: University of Missouri-Columbia,Health Management and Informatics Department,Columbia,MO,USA,65211
BookMark eNotj8FOwkAURUejiYB8gZtJXLe-NzNtp0tSizTBuFBcsCGv9A2MKS1pawJ_L4ms7tmck9yxuGvahoV4RggRIX2Zr9broMjzPIogjkMFSoWptcqivhHTNLEYx5GJEwS4FSOMIhuYRKcPYtz3PwAKIEpH4j0_HWvyDZU1y1khXdvJnLr6LF954O3g20a2Ti6Y6mEvsz01O-7ltyf5OXRMB9_sZFb_9gN3F3wU947qnqfXnYjVPP_KFsHy463IZsvAK9BDoLTTZB2zQlOWWCprUpcYJqoQFBu3pcSA1rpEa5w1luLyYmBSGUZTKT0RT_9dz8ybY-cP1J031_f6D54_Ues
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FUZZ-IEEE55066.2022.9882813
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665467100
166546710X
EISSN 1558-4739
EndPage 6
ExternalDocumentID 9882813
Genre orig-research
GroupedDBID -~X
6IE
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-23f3a8fee214bb1b2849f74eaad102e4fca740333b184f848a6bf3a17d4e14d23
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861288500127&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:14:25 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-23f3a8fee214bb1b2849f74eaad102e4fca740333b184f848a6bf3a17d4e14d23
PageCount 6
ParticipantIDs ieee_primary_9882813
PublicationCentury 2000
PublicationDate 2022-July-18
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-18
  day: 18
PublicationDecade 2020
PublicationTitle IEEE International Fuzzy Systems conference proceedings
PublicationTitleAbbrev FUZZ-IEEE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020059
Score 2.2031238
Snippet The ability to explain the predictions of machine learning models has become increasingly important, especially in healthcare applications. Streaming...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Annotations
Behavioral sciences
Clustering algorithms
explainable ai
Linguistics
Machine learning
Prediction algorithms
Predictive models
streaming clustering
Title Explainable AI for Early Detection of Health Changes Via Streaming Clustering
URI https://ieeexplore.ieee.org/document/9882813
WOSCitedRecordID wos000861288500127&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qEfFUtRW_CejRbZsPstmjVIseLD1YKb2UbDKBgm6l3fr7TbJrRfDiLQQSQkKYN8m89wBuLHWWycwkUjOZCM5UolBpf6-CWF3OuJY2mk2ko5GaTrNxA263XBhEjMVn2A3N-Jdvl2YTnsp6mYeDKljU7qSprLha2-QqsCj34LrW0OwNJ7NZEvIlj8BlKEVgrFsP_-WjEsPIsPW_BRxA54ePR8bbSHMIDSyOoPVtyEDq-9mG51BRV9OhyN0T8YCURAVjco9lrLkqyNKRinpEKmLBmrwuNAmf0_rdT04Gb5ugneCbHZgMH14Gj0ntl5AsWJ-XCeOOa-UQGRV5TnMfeTKXCtTaehiBwhmdij7nPPdpnVNCaZn7ETS1AqmwjB9Ds1gWeAJEKsMo-mRHWxPI8h5G2Ew5xSk3qm_MKbTD7sw_KkmMeb0xZ393n8N-OIDwJErVBTTL1QYvYdd8lov16iqe4xd0B527
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL2UKuqqaiu-DejSaScPM5mlVEuLbemildJNyeQBBZ1KO_X7TWbGiuDGXQgkhIRwz03uOQfgTmOrCY9VwCXhAaNEBMII6e6VF6tLCJVc52YT0XAoptN4VIH7LRfGGJMXn5mmb-Z_-XqpNv6prBU7OCi8Re3OA2MkLNha2_TK8yj34LZU0Wx1JrNZ4DMmh8G5L0YgpFlO8MtJJQ8kndr_lnAIjR9GHhptY80RVEx6DLVvSwZU3tA6DHxNXUmIQo895CApyjWM0ZPJ8qqrFC0tKshHqKAWrNHrQiL_PS3f3eSo_bbx6gmu2YBJ53nc7galY0KwICHNAkItlcIaQzBLEpy42BPbiBkptQMShlklIxZSShOX2FnBhOSJG4EjzQxmmtATqKbL1JwC4kIRbFy6I7XydHkHJHQsrKCYKhEqdQZ1vzvzj0IUY15uzPnf3Tew3x0P-vN-b_hyAQf-MPwDKRaXUM1WG3MFu-ozW6xX1_mZfgHYH6EC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Fuzzy+Systems+conference+proceedings&rft.atitle=Explainable+AI+for+Early+Detection+of+Health+Changes+Via+Streaming+Clustering&rft.au=Wu%2C+Wenlong&rft.au=Keller%2C+James+M.&rft.au=Skubic%2C+Marjorie&rft.au=Popescu%2C+Mihail&rft.date=2022-07-18&rft.pub=IEEE&rft.eissn=1558-4739&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FFUZZ-IEEE55066.2022.9882813&rft.externalDocID=9882813