Multi-Scale Fusion Maximum Entropy Subspace Clustering for Hyperspectral Band Selection

A novel multi-scale fusion maximum entropy subspace clustering (MFMESC) for hyperspectral image (HSI) band selection is proposed in this paper. Subspace clustering is combined as a self-expression layer with stacked convolutional autoencoder, so that subspace clustering working in linear subspaces c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE International Geoscience and Remote Sensing Symposium proceedings s. 779 - 782
Hlavní autori: Ma, Haipeng, Wang, Yulei, Jiang, Liru, Song, Meiping, Yu, Chunyan, Zhao, Enyu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 17.07.2022
Predmet:
ISSN:2153-7003
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A novel multi-scale fusion maximum entropy subspace clustering (MFMESC) for hyperspectral image (HSI) band selection is proposed in this paper. Subspace clustering is combined as a self-expression layer with stacked convolutional autoencoder, so that subspace clustering working in linear subspaces can deal with complicated HSI data with nonlinear characteristics. Multiple fully-connected linear layers are inserted between the encoder layers and their corresponding decoder layers to promote learning more favorable representations for subspace clustering. A multi-scale fusion module is designed to guide the fusion of multi-scale information extracted from different layers to learn a more discriminative self-expression coefficient matrix. Furthermore, the maximum entropy regularization is introduced in the subspace clustering to promote the connectivity within each subspace. Experimental results demonstrate the superiority of the proposed model against state of-the-art methods.
AbstractList A novel multi-scale fusion maximum entropy subspace clustering (MFMESC) for hyperspectral image (HSI) band selection is proposed in this paper. Subspace clustering is combined as a self-expression layer with stacked convolutional autoencoder, so that subspace clustering working in linear subspaces can deal with complicated HSI data with nonlinear characteristics. Multiple fully-connected linear layers are inserted between the encoder layers and their corresponding decoder layers to promote learning more favorable representations for subspace clustering. A multi-scale fusion module is designed to guide the fusion of multi-scale information extracted from different layers to learn a more discriminative self-expression coefficient matrix. Furthermore, the maximum entropy regularization is introduced in the subspace clustering to promote the connectivity within each subspace. Experimental results demonstrate the superiority of the proposed model against state of-the-art methods.
Author Zhao, Enyu
Yu, Chunyan
Wang, Yulei
Song, Meiping
Jiang, Liru
Ma, Haipeng
Author_xml – sequence: 1
  givenname: Haipeng
  surname: Ma
  fullname: Ma, Haipeng
  organization: Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, Dalian Maritime University,Dalian,China,116026
– sequence: 2
  givenname: Yulei
  surname: Wang
  fullname: Wang, Yulei
  organization: Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, Dalian Maritime University,Dalian,China,116026
– sequence: 3
  givenname: Liru
  surname: Jiang
  fullname: Jiang, Liru
  organization: Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, Dalian Maritime University,Dalian,China,116026
– sequence: 4
  givenname: Meiping
  surname: Song
  fullname: Song, Meiping
  organization: Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, Dalian Maritime University,Dalian,China,116026
– sequence: 5
  givenname: Chunyan
  surname: Yu
  fullname: Yu, Chunyan
  organization: Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, Dalian Maritime University,Dalian,China,116026
– sequence: 6
  givenname: Enyu
  surname: Zhao
  fullname: Zhao, Enyu
  organization: Center for Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, Dalian Maritime University,Dalian,China,116026
BookMark eNotkMtKw0AYRkdRsK19AjfzAqlzSSaTZQ29QYtgFJfln-QfGcmNmQTs2zdgV9_5Nmdx5uSh7VokhHK24pxlr4fd-qMoYqVlvBJMiFWmdayS-I4ss1RzNaFIM8HuyUzwREYpY_KJzEP4nUALxmbk-zTWg4uKEmqk2zG4rqUn-HPN2NBNO_iuv9BiNKGHEmlej2FA79ofajtP95cefeixHDzU9A3aihZYT3eSPJNHC3XA5W0X5Gu7-cz30fF9d8jXx8gJJodISJ4khiuuQNsKU8vA8Bg4msxUlcJKWYAyVRpLBpoDk5nlWpu4Mgols3JBXv69DhHPvXcN-Mv51kFeAVqMVqk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS46834.2022.9884654
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 9781665427920
1665427922
EISSN 2153-7003
EndPage 782
ExternalDocumentID 9884654
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132022232
  funderid: 10.13039/501100012226
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M670723
  funderid: 10.13039/501100002858
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-23155b1616a8fde7f0ab14a1eb9bdd6ed6faac768ec0a81a039f188b4db6e30f3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920916601007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:15:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-23155b1616a8fde7f0ab14a1eb9bdd6ed6faac768ec0a81a039f188b4db6e30f3
PageCount 4
ParticipantIDs ieee_primary_9884654
PublicationCentury 2000
PublicationDate 2022-July-17
PublicationDateYYYYMMDD 2022-07-17
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-17
  day: 17
PublicationDecade 2020
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.8153205
Snippet A novel multi-scale fusion maximum entropy subspace clustering (MFMESC) for hyperspectral image (HSI) band selection is proposed in this paper. Subspace...
SourceID ieee
SourceType Publisher
StartPage 779
SubjectTerms Benchmark testing
Data mining
Decoding
Entropy
Geoscience and remote sensing
hyperspectral band selection
Hyperspectral imaging
maximum entropy regularization
multi-scale fusion
stacked convolutional autoencoder
subspace clustering
Title Multi-Scale Fusion Maximum Entropy Subspace Clustering for Hyperspectral Band Selection
URI https://ieeexplore.ieee.org/document/9884654
WOSCitedRecordID wos000920916601007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5tUfDkoxXf5ODRtNlkm80etfQhaCmuYm8lm8xCoS9qV-y_N8m2FcGLtxBIBmZgMjOZ7xuEbgNwxHacESOYJqGJOInTOCUUjA6Ax1oVJElPUb8vh8N4UEJ3OywMAPjmM6i7pf_LN3Odu1JZI5bS0X-VUTmKRIHV2npdK5DSbacOjRuP3fuXJAmF5K5wwlh9c_bXEBX_hnQO_yf9CNV-wHh4sHtmjlEJZidov-sn8q6r6N1DaElidQ24k7viF35WX-NpPsVt14a-WGPnHWxuDLg1yR0xgr0H22AV92wSWmAtl2qCH9TM4MTPxbGX1NBbp_3a6pHNtAQyZpSviA3Ums3UBnBCycxAlFGVBqEKwKreGAFGZEppm12ApkoGivI4C6RMQ5MK4DTjp6gym8_gDGGhuAGhGdh8JxTcxIwFEGqeMaOETM05qjr1jBYFIcZoo5mLv7cv0YGzAPFslFeoslrmcI329Odq_LG88Vb8BtixoBw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61KnryUcW3OXg0bTbZptmjlr6wLcWt2FvJJrNQaLeldsX-e5PtQwQv3kIgCUxgMjOZ7_sQevDAEdtxRoxgmvimwkkQBRGhYLQHPNBqRZLUrnS7cjAIejn0uMXCAEDWfAZFN8z-8s1Up65UVgqkdPRfO2jXKWet0Vobv2uPpHTTq0ODUqvx9BqGvpDclU4YK65X_5JRyV6R-tH_zj9GZz9wPNzbPjQnKAfJKdpvZJq8ywJ6z0C0JLTWBlxPXfkLd9TXaJJOcM01os-W2PkHmx0Dro5TR41g98E2XMVNm4au0JZzNcbPKjE4zJRx7CZn6K1e61ebZK2XQEaM8gWxoVq5HNkQTigZG6jEVEWerzywxjdGgBGxUtrmF6Cpkp6iPIg9KSPfRAI4jfk5yifTBC4QFoobEJqBzXh8wU3AmAe-5jEzSsjIXKKCM89wtqLEGK4tc_X39D06aPY77WG71X25RofuNkjGTXmD8ot5CrdoT38uRh_zu-xGvwFdHaNl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Multi-Scale+Fusion+Maximum+Entropy+Subspace+Clustering+for+Hyperspectral+Band+Selection&rft.au=Ma%2C+Haipeng&rft.au=Wang%2C+Yulei&rft.au=Jiang%2C+Liru&rft.au=Song%2C+Meiping&rft.date=2022-07-17&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=779&rft.epage=782&rft_id=info:doi/10.1109%2FIGARSS46834.2022.9884654&rft.externalDocID=9884654