A Novel Method for COVID-19 Pandemic Information Fake News Detection Based on the Arithmetic Optimization Algorithm

The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and costly in terms of the loss of human lives. The ongoing COVID-19 pandemic has unfortunately shown the significant and remarkable spread of fake...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) s. 259 - 266
Hlavní autori: Zivkovic, Miodrag, Stoean, Catalin, Petrovic, Aleksandar, Bacanin, Nebojsa, Strumberger, Ivana, Zivkovic, Tamara
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and costly in terms of the loss of human lives. The ongoing COVID-19 pandemic has unfortunately shown the significant and remarkable spread of fake news, concerning the disease itself, vaccination, number of deaths, and so on. It is necessary to develop an effective algorithm that will be able to detect COVID-19 misinformation and help scientists to easily separate fake from true news. The research presented in this paper proposes an arithmetic optimization algorithm (AOA) - based approach that can improve the classification results by reducing the number of features and achieve high accuracy. The AOA has been utilized as a wrapper feature selection. The obtained simulation results were subject to a comparative analysis with both world-class classifiers and other nature-inspired evolutionary approaches. The results of the simulation indicate better performance of the proposed approach with AOA over other algorithms and demonstrate that it obtains superior accuracy.
AbstractList The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and costly in terms of the loss of human lives. The ongoing COVID-19 pandemic has unfortunately shown the significant and remarkable spread of fake news, concerning the disease itself, vaccination, number of deaths, and so on. It is necessary to develop an effective algorithm that will be able to detect COVID-19 misinformation and help scientists to easily separate fake from true news. The research presented in this paper proposes an arithmetic optimization algorithm (AOA) - based approach that can improve the classification results by reducing the number of features and achieve high accuracy. The AOA has been utilized as a wrapper feature selection. The obtained simulation results were subject to a comparative analysis with both world-class classifiers and other nature-inspired evolutionary approaches. The results of the simulation indicate better performance of the proposed approach with AOA over other algorithms and demonstrate that it obtains superior accuracy.
Author Stoean, Catalin
Bacanin, Nebojsa
Zivkovic, Tamara
Petrovic, Aleksandar
Strumberger, Ivana
Zivkovic, Miodrag
Author_xml – sequence: 1
  givenname: Miodrag
  orcidid: 0000-0002-4351-068X
  surname: Zivkovic
  fullname: Zivkovic, Miodrag
  organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia
– sequence: 2
  givenname: Catalin
  orcidid: 0000-0001-5917-1857
  surname: Stoean
  fullname: Stoean, Catalin
  organization: University of Craiova,Department of Computer Science,Craiova,Romania
– sequence: 3
  givenname: Aleksandar
  orcidid: 0000-0003-3324-3909
  surname: Petrovic
  fullname: Petrovic, Aleksandar
  organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia
– sequence: 4
  givenname: Nebojsa
  orcidid: 0000-0002-2062-924X
  surname: Bacanin
  fullname: Bacanin, Nebojsa
  organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia
– sequence: 5
  givenname: Ivana
  orcidid: 0000-0002-1154-6696
  surname: Strumberger
  fullname: Strumberger, Ivana
  organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia
– sequence: 6
  givenname: Tamara
  orcidid: 0000-0003-2969-1709
  surname: Zivkovic
  fullname: Zivkovic, Tamara
  organization: School of Electrical Engineering, University of Belgrade,Belgrade,Serbia
BookMark eNotjNtOgzAcxmuiFzr3BCamLwD2SOklMqckE0ymJl4tLfyRRg4LNBp9enHz6jvl912g037oAaFrSkJKib7ZvuXJNpVCChoywmhICJH0BC21imkUSUEiSeQ5mhKcD5_Q4kfwzVDhehhxWrxmq4Bq_GT6CjpX4qyf-854N_R4bT4A5_A14RV4KA_drZmgwrPxDeBkdL7pwM9csfeucz9HMGnfh8N0ic5q006w_NcFelnfPacPwaa4z9JkEzhGuA8Yo1aK2EBZVVJao2LOqC610HVpNatrZSJrWVxyGcV8DlzE6g9RlnEKlC_Q1fHXAcBuP7rOjN87rQjhXPBfP69Yew
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SYNASC54541.2021.00051
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665406505
166540650X
EndPage 266
ExternalDocumentID 9700334
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-221b548aecdd55ba783219c949fcb92ff7a6bb28c356837a634871b547b231e13
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786477000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:23 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-221b548aecdd55ba783219c949fcb92ff7a6bb28c356837a634871b547b231e13
ORCID 0000-0002-4351-068X
0000-0001-5917-1857
0000-0003-3324-3909
0000-0002-1154-6696
0000-0002-2062-924X
0000-0003-2969-1709
PageCount 8
ParticipantIDs ieee_primary_9700334
PublicationCentury 2000
PublicationDate 2021-Dec.
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
PublicationTitleAbbrev SYNASC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9972082
Snippet The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and...
SourceID ieee
SourceType Publisher
StartPage 259
SubjectTerms arithmetic optimization
Classification algorithms
COVID-19
Fake news
Feature extraction
metaheuristics
optimization
Pandemics
Support vector machines
swarm intelligence
Vaccines
Title A Novel Method for COVID-19 Pandemic Information Fake News Detection Based on the Arithmetic Optimization Algorithm
URI https://ieeexplore.ieee.org/document/9700334
WOSCitedRecordID wos000786477000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCkRoy_8w4eLWxdWdcjgkQTHSQowRNZf0wXYTMw-Ptty4Ix8eKt6dI0eU36vq973_sQugk1j0TAFTYcmWIakBQLGimsqSIiUNpLnL5i8sTiOJpO-aiGbndaGK21Kz7TLTt0__JVIdf2qazNmbUeo3VUZ4xttVqV6Nf3eHv8FnfHPYMIqOV9xG85fPLLNcUljcHB_7Y7RM0f9R2MdnnlCNV0foxWXYiLjZ7Ds7N8BoM1oTecPPaxz2FkX4IXmYRKXGSDDYPkU4O9w6CvS1dwlcOdyVkKzMDAPugus_JjYUWMMDQXx6JSZEJ3_l64T030Orh_6T3gyjABZ8QLSkyILwwDSbRUqtMRCbM2RFxyylMpOElTloRCkEgGndAQ0yQMDF2xS5gwME_7wQlq5EWuTxEYZmPb1rCU8JQmvo58L2JEitT2s2NcnqFjG7DZ17YnxqyK1fnf0xdo357ItgzkEjXK5VpfoT25KbPV8tod5Dd3KJ_G
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0QTfRJDRi_7YOPDtau--jjBIlEGCQgwSeyfkwXYTMw-P22ZcGY-OJb06Vpcpv0ntPdcw8A956kAXOosBRHJhZxcGIxEghLEoGZI6QdG33FpOdHUTCd0mEFPOy0MFJKU3wmG3po_uWLnK_1U1mT-tp6jOyBfZcQjLZqrVL2i2zaHL1F4ailMAHRzA-jhkEov3xTTNroHP9vwxNQ_9HfweEus5yCisxqYBXCKN_IOewb02eo0CZsDSbdtoUoHOq34EXKYSkv0uGGnfhTQn2LwbYsTMlVBh9V1hJQDRTwg-EyLT4WWsYIB-rqWJSaTBjO33PzqQ5eO0_j1rNVWiZYKbadwsIYMcVBYsmFcF0W-9qIiHJKaMIZxUnixx5jOOCO6ylqGnuOIix6ic8U0JPIOQPVLM_kOYCK2-jGNX6CaUJiJANkBz7mLNEd7XzKL0BNB2z2te2KMStjdfn39B04fB73e7NeN3q5Akf6dLZFIdegWizX8gYc8E2Rrpa35lC_AfVTow0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+23rd+International+Symposium+on+Symbolic+and+Numeric+Algorithms+for+Scientific+Computing+%28SYNASC%29&rft.atitle=A+Novel+Method+for+COVID-19+Pandemic+Information+Fake+News+Detection+Based+on+the+Arithmetic+Optimization+Algorithm&rft.au=Zivkovic%2C+Miodrag&rft.au=Stoean%2C+Catalin&rft.au=Petrovic%2C+Aleksandar&rft.au=Bacanin%2C+Nebojsa&rft.date=2021-12-01&rft.pub=IEEE&rft.spage=259&rft.epage=266&rft_id=info:doi/10.1109%2FSYNASC54541.2021.00051&rft.externalDocID=9700334