A Novel Method for COVID-19 Pandemic Information Fake News Detection Based on the Arithmetic Optimization Algorithm
The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and costly in terms of the loss of human lives. The ongoing COVID-19 pandemic has unfortunately shown the significant and remarkable spread of fake...
Uložené v:
| Vydané v: | 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) s. 259 - 266 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and costly in terms of the loss of human lives. The ongoing COVID-19 pandemic has unfortunately shown the significant and remarkable spread of fake news, concerning the disease itself, vaccination, number of deaths, and so on. It is necessary to develop an effective algorithm that will be able to detect COVID-19 misinformation and help scientists to easily separate fake from true news. The research presented in this paper proposes an arithmetic optimization algorithm (AOA) - based approach that can improve the classification results by reducing the number of features and achieve high accuracy. The AOA has been utilized as a wrapper feature selection. The obtained simulation results were subject to a comparative analysis with both world-class classifiers and other nature-inspired evolutionary approaches. The results of the simulation indicate better performance of the proposed approach with AOA over other algorithms and demonstrate that it obtains superior accuracy. |
|---|---|
| AbstractList | The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and costly in terms of the loss of human lives. The ongoing COVID-19 pandemic has unfortunately shown the significant and remarkable spread of fake news, concerning the disease itself, vaccination, number of deaths, and so on. It is necessary to develop an effective algorithm that will be able to detect COVID-19 misinformation and help scientists to easily separate fake from true news. The research presented in this paper proposes an arithmetic optimization algorithm (AOA) - based approach that can improve the classification results by reducing the number of features and achieve high accuracy. The AOA has been utilized as a wrapper feature selection. The obtained simulation results were subject to a comparative analysis with both world-class classifiers and other nature-inspired evolutionary approaches. The results of the simulation indicate better performance of the proposed approach with AOA over other algorithms and demonstrate that it obtains superior accuracy. |
| Author | Stoean, Catalin Bacanin, Nebojsa Zivkovic, Tamara Petrovic, Aleksandar Strumberger, Ivana Zivkovic, Miodrag |
| Author_xml | – sequence: 1 givenname: Miodrag orcidid: 0000-0002-4351-068X surname: Zivkovic fullname: Zivkovic, Miodrag organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia – sequence: 2 givenname: Catalin orcidid: 0000-0001-5917-1857 surname: Stoean fullname: Stoean, Catalin organization: University of Craiova,Department of Computer Science,Craiova,Romania – sequence: 3 givenname: Aleksandar orcidid: 0000-0003-3324-3909 surname: Petrovic fullname: Petrovic, Aleksandar organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia – sequence: 4 givenname: Nebojsa orcidid: 0000-0002-2062-924X surname: Bacanin fullname: Bacanin, Nebojsa organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia – sequence: 5 givenname: Ivana orcidid: 0000-0002-1154-6696 surname: Strumberger fullname: Strumberger, Ivana organization: Singidunum University,Department of Informatics and Computing,Belgrade,Serbia – sequence: 6 givenname: Tamara orcidid: 0000-0003-2969-1709 surname: Zivkovic fullname: Zivkovic, Tamara organization: School of Electrical Engineering, University of Belgrade,Belgrade,Serbia |
| BookMark | eNotjNtOgzAcxmuiFzr3BCamLwD2SOklMqckE0ymJl4tLfyRRg4LNBp9enHz6jvl912g037oAaFrSkJKib7ZvuXJNpVCChoywmhICJH0BC21imkUSUEiSeQ5mhKcD5_Q4kfwzVDhehhxWrxmq4Bq_GT6CjpX4qyf-854N_R4bT4A5_A14RV4KA_drZmgwrPxDeBkdL7pwM9csfeucz9HMGnfh8N0ic5q006w_NcFelnfPacPwaa4z9JkEzhGuA8Yo1aK2EBZVVJao2LOqC610HVpNatrZSJrWVxyGcV8DlzE6g9RlnEKlC_Q1fHXAcBuP7rOjN87rQjhXPBfP69Yew |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SYNASC54541.2021.00051 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665406505 166540650X |
| EndPage | 266 |
| ExternalDocumentID | 9700334 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-221b548aecdd55ba783219c949fcb92ff7a6bb28c356837a634871b547b231e13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786477000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:23 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-221b548aecdd55ba783219c949fcb92ff7a6bb28c356837a634871b547b231e13 |
| ORCID | 0000-0002-4351-068X 0000-0001-5917-1857 0000-0003-3324-3909 0000-0002-1154-6696 0000-0002-2062-924X 0000-0003-2969-1709 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9700334 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec. |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) |
| PublicationTitleAbbrev | SYNASC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9972082 |
| Snippet | The problem of fake news on the Internet is not new. However, in the case of a global pandemic, this kind of misinformation can be dangerous, confusing, and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 259 |
| SubjectTerms | arithmetic optimization Classification algorithms COVID-19 Fake news Feature extraction metaheuristics optimization Pandemics Support vector machines swarm intelligence Vaccines |
| Title | A Novel Method for COVID-19 Pandemic Information Fake News Detection Based on the Arithmetic Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9700334 |
| WOSCitedRecordID | wos000786477000039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AePCkRoy_8w4eLWxdWdcjgkQTHSQowRNZf0wXYTMw-Ptty4Ix8eKt6dI0eU36vq973_sQugk1j0TAFTYcmWIakBQLGimsqSIiUNpLnL5i8sTiOJpO-aiGbndaGK21Kz7TLTt0__JVIdf2qazNmbUeo3VUZ4xttVqV6Nf3eHv8FnfHPYMIqOV9xG85fPLLNcUljcHB_7Y7RM0f9R2MdnnlCNV0foxWXYiLjZ7Ds7N8BoM1oTecPPaxz2FkX4IXmYRKXGSDDYPkU4O9w6CvS1dwlcOdyVkKzMDAPugus_JjYUWMMDQXx6JSZEJ3_l64T030Orh_6T3gyjABZ8QLSkyILwwDSbRUqtMRCbM2RFxyylMpOElTloRCkEgGndAQ0yQMDF2xS5gwME_7wQlq5EWuTxEYZmPb1rCU8JQmvo58L2JEitT2s2NcnqFjG7DZ17YnxqyK1fnf0xdo357ItgzkEjXK5VpfoT25KbPV8tod5Dd3KJ_G |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0QTfRJDRi_7YOPDtau--jjBIlEGCQgwSeyfkwXYTMw-P22ZcGY-OJb06Vpcpv0ntPdcw8A956kAXOosBRHJhZxcGIxEghLEoGZI6QdG33FpOdHUTCd0mEFPOy0MFJKU3wmG3po_uWLnK_1U1mT-tp6jOyBfZcQjLZqrVL2i2zaHL1F4ailMAHRzA-jhkEov3xTTNroHP9vwxNQ_9HfweEus5yCisxqYBXCKN_IOewb02eo0CZsDSbdtoUoHOq34EXKYSkv0uGGnfhTQn2LwbYsTMlVBh9V1hJQDRTwg-EyLT4WWsYIB-rqWJSaTBjO33PzqQ5eO0_j1rNVWiZYKbadwsIYMcVBYsmFcF0W-9qIiHJKaMIZxUnixx5jOOCO6ylqGnuOIix6ic8U0JPIOQPVLM_kOYCK2-jGNX6CaUJiJANkBz7mLNEd7XzKL0BNB2z2te2KMStjdfn39B04fB73e7NeN3q5Akf6dLZFIdegWizX8gYc8E2Rrpa35lC_AfVTow0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+23rd+International+Symposium+on+Symbolic+and+Numeric+Algorithms+for+Scientific+Computing+%28SYNASC%29&rft.atitle=A+Novel+Method+for+COVID-19+Pandemic+Information+Fake+News+Detection+Based+on+the+Arithmetic+Optimization+Algorithm&rft.au=Zivkovic%2C+Miodrag&rft.au=Stoean%2C+Catalin&rft.au=Petrovic%2C+Aleksandar&rft.au=Bacanin%2C+Nebojsa&rft.date=2021-12-01&rft.pub=IEEE&rft.spage=259&rft.epage=266&rft_id=info:doi/10.1109%2FSYNASC54541.2021.00051&rft.externalDocID=9700334 |