A Screening System for Mild Cognitive Impairment Based on Neuropsychological Drawing Test and Neural Network

Alzheimer's disease and the other type of dementia have become one of the most serious global issues and the fifth leading cause of death worldwide nowadays. Therefore, early detection of the disease is crucial in order to improve the quality of life of the patients and to decrease the burden o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics s. 3543 - 3548
Hlavní autoři: Cheah, Wen-Ting, Chang, Wei-Der, Hwang, Jwu-Jia, Hong, Sheng-Yi, Fu, Li-Chen, Chang, Yu-Ling
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2019
Témata:
ISSN:2577-1655
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Alzheimer's disease and the other type of dementia have become one of the most serious global issues and the fifth leading cause of death worldwide nowadays. Therefore, early detection of the disease is crucial in order to improve the quality of life of the patients and to decrease the burden of their caregiver and clinicians. Mild cognitive impairment (MCI) is a prodromal stage of progressing to Alzheimer's disease which should be focus on. In this paper, we have proposed a screening system based on the Rey-osterrieth Complex Figure, a neuropsychological test, that can automatically assist the clinicians to detect whether the subject is MCI or not. A data-driven deep learning approach is implemented in this work. Convolution autoencoder is designed initially to extract features from the input image. The features learned by the encoder are then used for further training the classifier. In order to validate the performance of our work, 59 MCI subjects and 59 healthy controls are recruited under the approval of institutional review board from the National Taiwan University Hospital. The performance of our proposed model is evaluated by using 10-fold cross-validation and it is repeated five times. As a result, a mean area under the receiver operating characteristic curve score of 0.851 and 0.810 of accuracy are achieved.
AbstractList Alzheimer's disease and the other type of dementia have become one of the most serious global issues and the fifth leading cause of death worldwide nowadays. Therefore, early detection of the disease is crucial in order to improve the quality of life of the patients and to decrease the burden of their caregiver and clinicians. Mild cognitive impairment (MCI) is a prodromal stage of progressing to Alzheimer's disease which should be focus on. In this paper, we have proposed a screening system based on the Rey-osterrieth Complex Figure, a neuropsychological test, that can automatically assist the clinicians to detect whether the subject is MCI or not. A data-driven deep learning approach is implemented in this work. Convolution autoencoder is designed initially to extract features from the input image. The features learned by the encoder are then used for further training the classifier. In order to validate the performance of our work, 59 MCI subjects and 59 healthy controls are recruited under the approval of institutional review board from the National Taiwan University Hospital. The performance of our proposed model is evaluated by using 10-fold cross-validation and it is repeated five times. As a result, a mean area under the receiver operating characteristic curve score of 0.851 and 0.810 of accuracy are achieved.
Author Hwang, Jwu-Jia
Chang, Yu-Ling
Fu, Li-Chen
Chang, Wei-Der
Cheah, Wen-Ting
Hong, Sheng-Yi
Author_xml – sequence: 1
  givenname: Wen-Ting
  surname: Cheah
  fullname: Cheah, Wen-Ting
  organization: National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan
– sequence: 2
  givenname: Wei-Der
  surname: Chang
  fullname: Chang, Wei-Der
  organization: National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan
– sequence: 3
  givenname: Jwu-Jia
  surname: Hwang
  fullname: Hwang, Jwu-Jia
  organization: National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan
– sequence: 4
  givenname: Sheng-Yi
  surname: Hong
  fullname: Hong, Sheng-Yi
  organization: National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan
– sequence: 5
  givenname: Li-Chen
  surname: Fu
  fullname: Fu, Li-Chen
  organization: National Taiwan University,Department of Computer Science and Information Engineering,Taipei,Taiwan
– sequence: 6
  givenname: Yu-Ling
  surname: Chang
  fullname: Chang, Yu-Ling
  organization: National Taiwan University,Department of Psychology,Taipei,Taiwan
BookMark eNotkMtOwzAURA0CibawR2LjH0jxdeLEXpbwqtSWRcu6cu2bYkjsyg5U_XteXc1odHQWMyRnPngk5BrYGICp2-W8HnMGaiwV5FKyEzKEiksoRKmKUzLgoqoyKIW4IMOU3hnjrAA5IO2ELk1E9M5v6fKQeuxoEyKdu9bSOmy9690X0mm30y526Ht6pxNaGjxd4GcMu3Qwb6ENW2d0S--j3v-KVph6qr39Y372Bfb7ED8uyXmj24RXxxyR18eHVf2czV6epvVkljnO8j7jUHKNhpcIVS6bjQIwBVNWbYSxIFH89GrDOeNNWaKVRqhCmVwjN2CtqvIRufn3OkRc76LrdDysj8_k3-0_Wlg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC.2019.8913880
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 1728145694
9781728145693
EISSN 2577-1655
EndPage 3548
ExternalDocumentID 8913880
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i203t-2162aec26e1738fb911c409d9b5cd18e509d7b2202f66ed8c5949c3ae2c1dd973
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521353903090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:46:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-2162aec26e1738fb911c409d9b5cd18e509d7b2202f66ed8c5949c3ae2c1dd973
PageCount 6
ParticipantIDs ieee_primary_8913880
PublicationCentury 2000
PublicationDate 2019-Oct.
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-Oct.
PublicationDecade 2010
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.144998
Snippet Alzheimer's disease and the other type of dementia have become one of the most serious global issues and the fifth leading cause of death worldwide nowadays....
SourceID ieee
SourceType Publisher
StartPage 3543
SubjectTerms Biological neural networks
Convolution
convolution neural network
Dementia
Feature extraction
Magnetic resonance imaging
Mild cognitive impairment
screening system
Training
Title A Screening System for Mild Cognitive Impairment Based on Neuropsychological Drawing Test and Neural Network
URI https://ieeexplore.ieee.org/document/8913880
WOSCitedRecordID wos000521353903090&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEv2of4JgcPCq7dZN9HrRY9tBRaobeSTWZhoWzLttW_72R3Wyt48baEPGCSzEx2vvkG4FZJnpDjqa0odBPLRcEtSYbS8mwuUSY2V3FYFJsIhsNwOo1GNXjY5cIgYgE-w0fzWcTy9UJtzK-yrgmp0XmrQz0I_DJXa_e4sl0ebsOQdtQdD3oGt0UHoRzzq3hKYTv6x_9b9QQ6P0l4bLQzL02oYdaCoz3-wBY0q5u5YncVffR9G-ZPbKwMmoa6sJKQnJFnygbpXLPeFi3E3kkPpLlZmj2TJdNskbGCqWO5rxLZSy6_zEQTsh5MZrroQ-3DEj7egY_-66T3ZlU1FaxU2M7aEtwXEpXwkQdOmMSk6xQ98XQUe0rzEMl_0EEshC0S30cdKi9yI-VIFIprHQXOKTSyRYZnwGLXQxqgnEBK15NcauQi1j7JKo5ojnNoG2HOliVtxqyS48XfzZdwaParxMldQWOdb_AaDtTnOl3lN8VefwPfRKys
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQX3ab4bR58ULCuSb8fdTo23MpgE_Y20iSFwuhGt-m_76Xt5gRffCshH3BJ7i693_0O4E5wGqPjKY3At2PDVowaHA2l4ZiUKx6bVER-XmzCC0N_PA4GFXjc5MIopXLwmXrSn3ksX87ESv8qa-qQGp63HdjVlbPKbK3N88q0qb8ORJpBc9hvaeQWHoVi1K_yKbn1aB_9b91jOPlJwyODjYGpQUWldTjcYhCsQ628mwtyXxJIPzRg-kyGQuNpsAspKMkJ-qakn0wlaa3xQqSLmiDJ9NLkBW2ZJLOU5Fwd822lSF4z_qUnGqH9IDyVeR9sDwsA-Ql8tN9GrY5RVlUwEmZaS4NRl3ElmKuoZ_lxhNpO4CNPBpEjJPUVehDSixgzWey6SvrCCexAWFwxQaUMPOsUquksVWdAIttROEBYHue2wymXirJIuiirKMA5zqGhhTmZF8QZk1KOF38338J-Z9TvTXrd8P0SDvTeFai5K6gus5W6hj3xuUwW2U2-798JJa_1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=A+Screening+System+for+Mild+Cognitive+Impairment+Based+on+Neuropsychological+Drawing+Test+and+Neural+Network&rft.au=Cheah%2C+Wen-Ting&rft.au=Chang%2C+Wei-Der&rft.au=Hwang%2C+Jwu-Jia&rft.au=Hong%2C+Sheng-Yi&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=3543&rft.epage=3548&rft_id=info:doi/10.1109%2FSMC.2019.8913880&rft.externalDocID=8913880