Hybrid Task Cascade for Instance Segmentation

Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN and Mask R-CNN only brings limited gain. In exploring a more effective approach, we...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 4969 - 4978
Main Authors: Chen, Kai, Pang, Jiangmiao, Wang, Jiaqi, Xiong, Yu, Li, Xiaoxiao, Sun, Shuyang, Feng, Wansen, Liu, Ziwei, Shi, Jianping, Ouyang, Wanli, Loy, Chen Change, Lin, Dahua
Format: Conference Proceeding
Language:English
Published: IEEE 01.06.2019
Subjects:
ISSN:1063-6919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN and Mask R-CNN only brings limited gain. In exploring a more effective approach, we find that the key to a successful instance segmentation cascade is to fully leverage the reciprocal relationship between detection and segmentation. In this work, we propose a new framework, Hybrid Task Cascade (HTC), which differs in two important aspects: (1) instead of performing cascaded refinement on these two tasks separately, it interweaves them for a joint multi-stage processing; (2) it adopts a fully convolutional branch to provide spatial context, which can help distinguishing hard foreground from cluttered background. Overall, this framework can learn more discriminative features progressively while integrating complementary features together in each stage. Without bells and whistles, a single HTC obtains 38.4% and 1.5% improvement over a strong Cascade Mask R-CNN baseline on MSCOCO dataset. Moreover, our overall system achieves 48.6 mask AP on the test-challenge split, ranking 1st in the COCO 2018 Challenge Object Detection Task. Code is available at https://github.com/open-mmlab/mmdetection.
AbstractList Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN and Mask R-CNN only brings limited gain. In exploring a more effective approach, we find that the key to a successful instance segmentation cascade is to fully leverage the reciprocal relationship between detection and segmentation. In this work, we propose a new framework, Hybrid Task Cascade (HTC), which differs in two important aspects: (1) instead of performing cascaded refinement on these two tasks separately, it interweaves them for a joint multi-stage processing; (2) it adopts a fully convolutional branch to provide spatial context, which can help distinguishing hard foreground from cluttered background. Overall, this framework can learn more discriminative features progressively while integrating complementary features together in each stage. Without bells and whistles, a single HTC obtains 38.4% and 1.5% improvement over a strong Cascade Mask R-CNN baseline on MSCOCO dataset. Moreover, our overall system achieves 48.6 mask AP on the test-challenge split, ranking 1st in the COCO 2018 Challenge Object Detection Task. Code is available at https://github.com/open-mmlab/mmdetection.
Author Feng, Wansen
Pang, Jiangmiao
Ouyang, Wanli
Chen, Kai
Li, Xiaoxiao
Shi, Jianping
Liu, Ziwei
Lin, Dahua
Loy, Chen Change
Wang, Jiaqi
Xiong, Yu
Sun, Shuyang
Author_xml – sequence: 1
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: The Chinese Univ. of Hong Kong
– sequence: 2
  givenname: Jiangmiao
  surname: Pang
  fullname: Pang, Jiangmiao
  organization: Zhejiang Univ
– sequence: 3
  givenname: Jiaqi
  surname: Wang
  fullname: Wang, Jiaqi
  organization: The Chinese Univ. of Hong Kong
– sequence: 4
  givenname: Yu
  surname: Xiong
  fullname: Xiong, Yu
  organization: The Chinese Univ. of HK
– sequence: 5
  givenname: Xiaoxiao
  surname: Li
  fullname: Li, Xiaoxiao
  organization: The Chinese Univ. of Hong Kong
– sequence: 6
  givenname: Shuyang
  surname: Sun
  fullname: Sun, Shuyang
  organization: The Univ. of Sydney
– sequence: 7
  givenname: Wansen
  surname: Feng
  fullname: Feng, Wansen
  organization: Lille Univ
– sequence: 8
  givenname: Ziwei
  surname: Liu
  fullname: Liu, Ziwei
  organization: The Chinese Univ. of Hong Kong
– sequence: 9
  givenname: Jianping
  surname: Shi
  fullname: Shi, Jianping
  organization: Sensetime Group Limited
– sequence: 10
  givenname: Wanli
  surname: Ouyang
  fullname: Ouyang, Wanli
  organization: The Univ. of Sydney
– sequence: 11
  givenname: Chen Change
  surname: Loy
  fullname: Loy, Chen Change
  organization: Nanyang Technological Univ
– sequence: 12
  givenname: Dahua
  surname: Lin
  fullname: Lin, Dahua
  organization: The Chinese Univ. of Hong Kong
BookMark eNotzLFOwzAQgGGDQKKUzAwseYGUOzuxfSOKoK1UCQSFtbraFxSgDoqz9O1BgukfPum_VGdpSKLUNcICEei2fXt6XmhAWgA0iCeqIOfRaY9Gk_GnaoZgTWUJ6UIVOX8AgNGIlvxMVavjfuxjueX8WbacA0cpu2Es1ylPnIKUL_J-kDTx1A_pSp13_JWl-O9cvT7cb9tVtXlcrtu7TdVrMFOFXeRAXaAIQSJrjMGI81B3IUb20Tj0iA4liG6MDd4xN3b_a2Qdx9rM1c3ftxeR3ffYH3g87jw1NVprfgDF70V-
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2019.00511
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781728132938
1728132932
EISSN 1063-6919
EndPage 4978
ExternalDocumentID 8954166
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i203t-1fdac9fc9d0ceda21dc3e7804fcdda8d37181171ece2536c87aa56bdda967ad43
IEDL.DBID RIE
ISICitedReferencesCount 1441
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529484005016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 10 07:40:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1fdac9fc9d0ceda21dc3e7804fcdda8d37181171ece2536c87aa56bdda967ad43
PageCount 10
ParticipantIDs ieee_primary_8954166
PublicationCentury 2000
PublicationDate 2019-June
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.6401565
Snippet Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation...
SourceID ieee
SourceType Publisher
StartPage 4969
SubjectTerms Categorization
Computer architecture
Computer vision
Convolutional codes
Instance segmentation
Object detection
Pattern recognition
Recognition: Detection
Retrieval
Semantic segmentation
Title Hybrid Task Cascade for Instance Segmentation
URI https://ieeexplore.ieee.org/document/8954166
WOSCitedRecordID wos000529484005016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sFT1VZ8k4NH1242m9e5WCpIKVpLbyWbzEoRt6XbCv57k-1SPXjxFhJImIRkHvm-GYBbF95FjgHd77yDksQ8MkrLyNDUZRk1mFdo9-mTHI3UbKbHDbjbc2EQsQKf4X1oVn_5bmm3IVTWU5p7-0E0oSml2HG19vEU5j0ZoVWdvYfGutefjp8DdiskpOShQtCv8imV9hi0_7fuEXR_aHhkvFcwx9DA4gTatd1I6ltZdiAafgXeFZmY8p30TRkg78Qbo-Sxsv38LC_49lGTjIouvA4eJv1hVJdBiBZJzDYRzZ2xOrfaxRadSaizDEPeoNw6Z5RjXr1QKilaTDgTVkljuMj8mBbSuJSdQqtYFngGhCmnXG4pQ2pSiWmmGU-NpYjeH82YOIdOkH6-2mW6mNeCX_zdfQmHYXt3wKkraG3WW7yGA_u5WZTrm-p4vgF0QJHW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRp6ib-tg8-Wtc0TZs8D2XDOYbOsbeR5q4yxE7WTfC_N-nK9MEX30ICFy4hubvk--4ArtHdi4Icuh9tgBIGwtdSJb5mEaYp05SVaPdxPxkM5GSihjW42XBhiKgEn9Gta5Z_-Tg3K_dU1pZKWP8h3oJtEVmxa7bW5kWF21gmVrLK38MC1e6Mh08OveVSUgpXI-hXAZXSftw3_jfzPrR-iHjecGNiDqBG-SE0Ks_Rq85l0QS_--WYV95IF29eRxcO9O5Zd9Trld6flfJMr-8VzShvwcv93ajT9atCCP4sDPjSZxlqozKjMDCEOmRoOLnMQZlB1BK5NTCMJYwMhYLHRiZaizi1YypONEb8COr5PKdj8LhEiZlhnJiOEopSxUWkDSOyEWnK4xNoOu2nH-tcF9NK8dO_u69gtzt67E_7vcHDGey5pV7DqM6hvlys6AJ2zOdyViwuy636BjsZlR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Hybrid+Task+Cascade+for+Instance+Segmentation&rft.au=Chen%2C+Kai&rft.au=Pang%2C+Jiangmiao&rft.au=Wang%2C+Jiaqi&rft.au=Xiong%2C+Yu&rft.date=2019-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=4969&rft.epage=4978&rft_id=info:doi/10.1109%2FCVPR.2019.00511&rft.externalDocID=8954166