The Application of Independent Component Analysis in Removing the Noise of EEG Signal

In the process of collecting and processing ElectroEncephaloGrapgy signals, it is often interfered by various noises and artifacts such as Electrooculography and electrocardiogram. In order to remove these interferences, this paper applies Independent Component Analysis technology to the problem of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA) s. 138 - 141
Hlavní autori: Chen, Yang, Xue, Song, Li, Dezhi, Geng, Xiaozhong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the process of collecting and processing ElectroEncephaloGrapgy signals, it is often interfered by various noises and artifacts such as Electrooculography and electrocardiogram. In order to remove these interferences, this paper applies Independent Component Analysis technology to the problem of EEG signal separation in the process of removing artifacts from the Brain computer interface. ICA can be executed by a variety of algorithms, from which we observe that there are four commonly used algorithms for brain signal separation. The four ICA algorithms are: Second Order Blind Identification (SOBI), Hyvarinen's Fixed Point Algorithm (FastICA), Infomax and Joint Approximation Diagonalization of Eigenmatrices (JADE). The ICA algorithm requires multiple iterations to obtain the separation matrix, which is computationally intensive and slow. Therefore, it is necessary to analyze which ICA algorithm is suitable for hardware when we need to consider design constraints and requirements. In this work, we use MATLAB to evaluate the four ICA algorithms based on some conditions (running time, allocated memory). The experimental results show that the MATLAB implementation of SOBI algorithm is the best among all analyzed ICA algorithms. Compared with the other three ICA algorithms, the SOBI algorithm can separate EEG signals more quickly and accurately.
AbstractList In the process of collecting and processing ElectroEncephaloGrapgy signals, it is often interfered by various noises and artifacts such as Electrooculography and electrocardiogram. In order to remove these interferences, this paper applies Independent Component Analysis technology to the problem of EEG signal separation in the process of removing artifacts from the Brain computer interface. ICA can be executed by a variety of algorithms, from which we observe that there are four commonly used algorithms for brain signal separation. The four ICA algorithms are: Second Order Blind Identification (SOBI), Hyvarinen's Fixed Point Algorithm (FastICA), Infomax and Joint Approximation Diagonalization of Eigenmatrices (JADE). The ICA algorithm requires multiple iterations to obtain the separation matrix, which is computationally intensive and slow. Therefore, it is necessary to analyze which ICA algorithm is suitable for hardware when we need to consider design constraints and requirements. In this work, we use MATLAB to evaluate the four ICA algorithms based on some conditions (running time, allocated memory). The experimental results show that the MATLAB implementation of SOBI algorithm is the best among all analyzed ICA algorithms. Compared with the other three ICA algorithms, the SOBI algorithm can separate EEG signals more quickly and accurately.
Author Chen, Yang
Xue, Song
Li, Dezhi
Geng, Xiaozhong
Author_xml – sequence: 1
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
  organization: School of Computer Technology and Engineering, Changchun Institute of Technology,Changchun,Jilin,China,130012
– sequence: 2
  givenname: Song
  surname: Xue
  fullname: Xue, Song
  organization: School of Computer Technology and Engineering, Changchun Institute of Technology,Changchun,Jilin,China,130012
– sequence: 3
  givenname: Dezhi
  surname: Li
  fullname: Li, Dezhi
  organization: School of Computer Technology and Engineering, Changchun Institute of Technology,Changchun,Jilin,China,130012
– sequence: 4
  givenname: Xiaozhong
  surname: Geng
  fullname: Geng, Xiaozhong
  email: 178143370@qq.com
  organization: School of Computer Technology and Engineering, Changchun Institute of Technology,Changchun,Jilin,China,130012
BookMark eNotjkFLw0AUhFfQg63-AkH2DzS-ty_Jbo4hxBgoCrY9l23yUheSTWiC0H_vil5m5jDfMCtx60fPQjwjRIiQvdTFrirzhBSYSIHCCAAovRErTNMkJpWSuheH_RfLfJp619jFjV6Onax9yxMH8YssxmEKsyHl3vbX2c3SefnJw_jt_FkugX4f3cy_XFlWcufOofcg7jrbz_z472txeC33xdtm-1HVRb7dOAW0bJAN2Th8NYaITaZ0ppVtT6ATRQgxdoDYqPTUMjamyTCxndatQQvKJMC0Fk9_u46Zj9PFDfZyPWaxhhiIfgCb-UyE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSGEA53208.2021.00036
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665432632
9781665432634
EndPage 141
ExternalDocumentID 9470403
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-1e83a41098833e8927972adb075231041f011c26bde1c8c915af77d81a02850e3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851388300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:37:40 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1e83a41098833e8927972adb075231041f011c26bde1c8c915af77d81a02850e3
PageCount 4
ParticipantIDs ieee_primary_9470403
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA)
PublicationTitleAbbrev ICSGEA
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8535278
Snippet In the process of collecting and processing ElectroEncephaloGrapgy signals, it is often interfered by various noises and artifacts such as Electrooculography...
SourceID ieee
SourceType Publisher
StartPage 138
SubjectTerms Approximation algorithms
blind source separation
brain-computer interface
Classification algorithms
ElectroEncephaloGrapgy
Electroencephalography
Hardware
Independent component analysis
Interference
Source separation
Title The Application of Independent Component Analysis in Removing the Noise of EEG Signal
URI https://ieeexplore.ieee.org/document/9470403
WOSCitedRecordID wos000851388300028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFH-o7LDTNnTsmxx2XLXpRz6OItUJQ2RO8CZpmo4e1g6t-_v3EjtlsMtuoSS0ecnj_Zq83_sBPKaIGTLBuUeNH3sRU8yzdEYvi1KVh0wjRHdE4Rc-m4nVSs5b8HTgwhhjXPKZ6dumu8vPKr2zR2UDGXHcc2Eb2pyzPVerIf1SXw6mo8UkGVqhA5uyFdC-K7bySzXFBY3x2f9edw69I_uOzA9x5QJapuzCEteTDI-3zaTKyfQgYVsT69dVaVs_ZUZIUZJX8-FODAjCPDKriq2x45JkQhbFO_brwXKcvI2evUYSwSsCP6zRoiJUEc7WagQbIQMueaCyFAO_BWoRzdFfdcDSzFAttKSxyjnPBFWII2LfhJfQKfFrroAw9G5lUoX_PyxKU0TaMfe1ygXVhrJYXkPXmmT9ua96sW6scfP341s4tTbfpwLeQafe7Mw9nOivuthuHtxSfQNLSZSN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNNGTGjB-24NHB-u-2h4JGR8RFyKQcCNd15kd2AwM_35fB0JMvHhrljZbX_vyfmvf7_0AnmPEDAlnzKLa9i0vkIFl6IxW4sUydQOFEL0iCo9YFPH5XIxr8LLnwmitq-Qz3TLN6i4_KdTGHJW1hcdwz7lHcGyUs_wtW2tH-6W2aA-7k37YMVIHJmnLoa2q3Mov3ZQqbPTO__fCC2ge-HdkvI8sl1DTeQNmuKKkc7hvJkVKhnsR25IYzy5y0_opNEKynLzrZXVmQBDokajI1tqMC8M-mWQf2K8Js1447Q6snSiClTm2W6JNuSs9nK1RCdZcOEwwRyYxhn4D1TyaoscqJ4gTTRVXgvoyZSzhVCKS8G3tXkE9x6-5BhKgf0sdS_wDCrw4RqztM1vJlFOlaeCLG2gYkyw-t3UvFjtr3P79-AlOB9O30WI0jF7v4MzYf5sYeA_1crXRD3CivspsvXqslu0bPf2X2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+6th+International+Conference+on+Smart+Grid+and+Electrical+Automation+%28ICSGEA%29&rft.atitle=The+Application+of+Independent+Component+Analysis+in+Removing+the+Noise+of+EEG+Signal&rft.au=Chen%2C+Yang&rft.au=Xue%2C+Song&rft.au=Li%2C+Dezhi&rft.au=Geng%2C+Xiaozhong&rft.date=2021-05-01&rft.pub=IEEE&rft.spage=138&rft.epage=141&rft_id=info:doi/10.1109%2FICSGEA53208.2021.00036&rft.externalDocID=9470403