Complexity classes defined via k-valued functions

A lot of complexity classes can be characterized by posing some global acceptance condition on the computation trees produced by nondeterministic polynomial time machines. If the acceptance condition can be performed by a tree automaton, we obtain the concept of locally definable acceptance types (U...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - Structure in Complexity Theory Conference s. 224 - 234
Hlavní autor: Hertrampf, U.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE Comput. Soc. Press 1994
Témata:
ISBN:0818656700, 9780818656705, 9780818656729, 0818656727
ISSN:1063-6870
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A lot of complexity classes can be characterized by posing some global acceptance condition on the computation trees produced by nondeterministic polynomial time machines. If the acceptance condition can be performed by a tree automaton, we obtain the concept of locally definable acceptance types (U. Hertrampf, 1992). This concept can be varied in different ways: if the acceptance condition depends only on the leaves of the computation tree, we obtain the concept of leaf languages (D. Bovet et al., 1991); if moreover the leaf language has to be a regular set, we obtain associative acceptance types. A special case appears, if we just count the number /spl alpha/ of accepting paths up to a fixed maximal value c (i.e. /spl alpha/=max(# accepting paths, c)) and then check, whether /spl alpha/ belongs to a given subset A/spl sube/{0,...,c-1}. This concept leads to complexity classes with finite acceptance types. We survey all these concepts and compare their power.< >
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISBN:0818656700
9780818656705
9780818656729
0818656727
ISSN:1063-6870
DOI:10.1109/SCT.1994.315801