Individualizing Head-Related Transfer Functions for Binaural Acoustic Applications

A Head Related Transfer Function (HRTF) characterizes how a hu-man ear receives sounds from a point in space, and depends on the shapes of one's head, pinna, and torso. Accurate estimations of HRTFs for human subjects are crucial in enabling binaural acoustic applications such as sound localiza...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) s. 105 - 117
Hlavní autoři: Zandi, Navid H., El-Mohandes, Awny M., Zheng, Rong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A Head Related Transfer Function (HRTF) characterizes how a hu-man ear receives sounds from a point in space, and depends on the shapes of one's head, pinna, and torso. Accurate estimations of HRTFs for human subjects are crucial in enabling binaural acoustic applications such as sound localization and 3D sound spatialization. Unfortunately, conventional approaches for HRTF estimation rely on specialized devices or lengthy measurement processes. This work proposes a novel lightweight method for HRTF individual-ization that can be implemented using commercial-off-the-shelf components and performed by average users in home settings. The proposed method has two key components: a generative neural network model that can be individualized to predict HRTFs of new subjects from sparse measurements, and a lightweight measurement procedure that collects HRTF data from spatial locations. Exten-sive experiments using a public dataset and in house measurement data from 10 subjects of different ages and genders, show that the individualized models significantly outperform a baseline model in the accuracy of predicted HRTFs. To further demonstrate the advantages of individualized HRTFs, we implement two prototype applications for binaural localization and acoustic spatialization. We find that the performance of a localization model is improved by 15° after trained with individualized HRTFs. Furthermore, in hearing tests, the success rate of correctly identifying the azimuth direction of incoming sounds increases by 183% after individualization.
AbstractList A Head Related Transfer Function (HRTF) characterizes how a hu-man ear receives sounds from a point in space, and depends on the shapes of one's head, pinna, and torso. Accurate estimations of HRTFs for human subjects are crucial in enabling binaural acoustic applications such as sound localization and 3D sound spatialization. Unfortunately, conventional approaches for HRTF estimation rely on specialized devices or lengthy measurement processes. This work proposes a novel lightweight method for HRTF individual-ization that can be implemented using commercial-off-the-shelf components and performed by average users in home settings. The proposed method has two key components: a generative neural network model that can be individualized to predict HRTFs of new subjects from sparse measurements, and a lightweight measurement procedure that collects HRTF data from spatial locations. Exten-sive experiments using a public dataset and in house measurement data from 10 subjects of different ages and genders, show that the individualized models significantly outperform a baseline model in the accuracy of predicted HRTFs. To further demonstrate the advantages of individualized HRTFs, we implement two prototype applications for binaural localization and acoustic spatialization. We find that the performance of a localization model is improved by 15° after trained with individualized HRTFs. Furthermore, in hearing tests, the success rate of correctly identifying the azimuth direction of incoming sounds increases by 183% after individualization.
Author Zheng, Rong
El-Mohandes, Awny M.
Zandi, Navid H.
Author_xml – sequence: 1
  givenname: Navid H.
  surname: Zandi
  fullname: Zandi, Navid H.
  email: hossen6@mcmaster.ca
  organization: McMaster University,Hamilton,Canada
– sequence: 2
  givenname: Awny M.
  surname: El-Mohandes
  fullname: El-Mohandes, Awny M.
  email: awny.elmohandes@mans.edu.eg
  organization: Mansoura University,Mansoura,Egypt
– sequence: 3
  givenname: Rong
  surname: Zheng
  fullname: Zheng, Rong
  email: rzheng@mcmaster.ca
  organization: McMaster University,Hamilton,Canada
BookMark eNotjEtOwzAUAI0ECyg9ASx8gZTnv70MFaWRKkClrCvHH2QpOJGTIMHpQYXVLGY0V-g89zkgdEtgRQiYu-bl9UlwxvSKAqUrACDyDC2N0kRKwY2kXF2ifZN9-kx-tl36Tvkdb4P11T50dgoeH4rNYwwFb-bsptTnEce-4PuU7Vxsh2vXz-OUHK6HoUvOnpJrdBFtN4blPxfobfNwWG-r3fNjs653VaLApoowrgOVTChvuHGgmNXgndYxtpx46o33Kuq2dZQLEYzjGlrlQAjBvZKCLdDN3zeFEI5DSR-2fB2NphJ-7Q_t1E4H
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPSN54338.2022.00016
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665496247
166549624X
EndPage 117
ExternalDocumentID 9826065
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-1348e26357d949c073a80dc88ffb41d2d9dd7f8bbc2455e9c480b7c05554d7653
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000855254100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:36:42 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-1348e26357d949c073a80dc88ffb41d2d9dd7f8bbc2455e9c480b7c05554d7653
PageCount 13
ParticipantIDs ieee_primary_9826065
PublicationCentury 2000
PublicationDate 2022-May
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May
PublicationDecade 2020
PublicationTitle 2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)
PublicationTitleAbbrev IPSN
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8549676
Snippet A Head Related Transfer Function (HRTF) characterizes how a hu-man ear receives sounds from a point in space, and depends on the shapes of one's head, pinna,...
SourceID ieee
SourceType Publisher
StartPage 105
SubjectTerms Acoustic applications
Binaural Localization
Conditional Variational AutoEncoder (CVAE)
Data acquisition
Estimation
Head-Related Transfer Function (HRTF)
Location awareness
Neural networks
Sound Spatialization
Torso
Transfer functions
Title Individualizing Head-Related Transfer Functions for Binaural Acoustic Applications
URI https://ieeexplore.ieee.org/document/9826065
WOSCitedRecordID wos000855254100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_ycGja_cj2STHKpYWpBS_6K1skgnsZSu19eCvd5KW2oMXL8sS2F2YbHiTybz3AG4q4avc8iLBUH_jhTSJ0lYk3CgvrSlcGUvZ709yPFbTqZ604HbLhUHE2HyGd-E2nuW7uV2FUllPUy5MkLkHe1KWa67Whg2Xpbo3mryMBactF-368ijDGUzMdzxTImQMDv_3sSPo_nLv2GSLKsfQwqYDz6Mtb6r-pmE2pKlJYiMbOhbxhp5lAwKp-B8xSkXZfd1UQVSD9e08enax_s5pdRfeBo-vD8Nk44aQ1HlaBM94rjBIx0inuba0NCuVOquU94ZnLnfaOemVMTbnQqC2XKVG2iDoxZ0sRXEC7Wbe4CkwSso0vaVES0vEY2UwS-nCvUPNK5GdQSfEY_axFryYbUJx_vfwBRyEgK-7AC-hvVys8Ar27dey_lxcx1n6AUWEloY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggQToBbxjQdGAvmwa3ssiKoVJaqgoG5VbJ-lLCkqLQO_HtuNSgcWliiylEQ6x3rn8733AK4LZotU0yxCX3-jGVeRkJpFVAnLtcpMJ5Sy34c8z8VkIkcNuFlzYRAxNJ_hrb8NZ_lmppe-VHYnXS7sIHMLtr1zVs3WqvlwSSzvBqPXnFG36XL7vjQIcXob8w3XlAAavf3_fe4A2r_sOzJa48ohNLBqwctgzZwqv90w6bvJiUIrGxoSEMc9S3oOpsKfRFwySu7LqvCyGqSrZ8G1i3Q3zqvb8NZ7HD_0o9oPISrTOPOu8VSgF4_hRlKp3eIsRGy0ENYqmpjUSGO4FUrplDKGUlMRK669pBc1vMOyI2hWswqPgbi0TLq3dFC7RWKxUJjE7kKtQUkLlpxAy8dj-rGSvJjWoTj9e_gKdvvj5-F0OMifzmDPB3_VE3gOzcV8iRewo78W5ef8MszYD0tBmc8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+21st+ACM%2FIEEE+International+Conference+on+Information+Processing+in+Sensor+Networks+%28IPSN%29&rft.atitle=Individualizing+Head-Related+Transfer+Functions+for+Binaural+Acoustic+Applications&rft.au=Zandi%2C+Navid+H.&rft.au=El-Mohandes%2C+Awny+M.&rft.au=Zheng%2C+Rong&rft.date=2022-05-01&rft.pub=IEEE&rft.spage=105&rft.epage=117&rft_id=info:doi/10.1109%2FIPSN54338.2022.00016&rft.externalDocID=9826065