Variable Rate Compression for Raw 3D Point Clouds

In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 International Conference on Robotics and Automation (ICRA) S. 8748 - 8755
Hauptverfasser: Al Muzaddid, Md Ahmed, Beksi, William J.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.05.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networks for different compression rates to generate consolidated point clouds of varying quality. In contrast, our network is capable of explicitly processing point clouds and generating a compressed description at a comprehensive range of bitrates. Furthermore, our approach ensures that there is no loss of information as a result of the voxelization process and the density of the point cloud does not affect the encoder/decoder performance. An extensive experimental evaluation shows that our model obtains state-of-the-art results, it is computationally efficient, and it can work directly with point cloud data thus avoiding an expensive voxelized representation.
AbstractList In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networks for different compression rates to generate consolidated point clouds of varying quality. In contrast, our network is capable of explicitly processing point clouds and generating a compressed description at a comprehensive range of bitrates. Furthermore, our approach ensures that there is no loss of information as a result of the voxelization process and the density of the point cloud does not affect the encoder/decoder performance. An extensive experimental evaluation shows that our model obtains state-of-the-art results, it is computationally efficient, and it can work directly with point cloud data thus avoiding an expensive voxelized representation.
Author Beksi, William J.
Al Muzaddid, Md Ahmed
Author_xml – sequence: 1
  givenname: Md Ahmed
  surname: Al Muzaddid
  fullname: Al Muzaddid, Md Ahmed
  email: mdahmedal.muzaddid@mavs.uta.edu
  organization: University of Texas at Arlington,Department of Computer Science and Engineering,Arlington,TX,USA
– sequence: 2
  givenname: William J.
  surname: Beksi
  fullname: Beksi, William J.
  email: william.beksi@uta.edu
  organization: University of Texas at Arlington,Department of Computer Science and Engineering,Arlington,TX,USA
BookMark eNotj11LwzAUQCPog879AkHyB1pzb9o093HUr8FAGZuvI2luINA1o62I_96BezpwHg6cO3E95IGFeARVAih6WrfbVWWMphIVYkkWEDVdiSU1Fhq0QObMWwFfbkzO9yy3bmbZ5uNp5GlKeZAxj2f5I_Wz_MxpmGXb5-8w3Yub6PqJlxcuxP71Zde-F5uPt3W72hQJlZ4LwMg1RkdE3ivlFOqq4kaxD6CNU100aLWujVXQkaeudiH6DoKpggdyeiEe_ruJmQ-nMR3d-Hu4jOg_ksZBWg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICRA46639.2022.9812239
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728196817
1728196817
EndPage 8755
ExternalDocumentID 9812239
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i203t-12fe52fa999bb00a02344e70ebd136a0cf6283356801c9b9c5adfbc1d64db19a3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000941277601099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:14:56 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-12fe52fa999bb00a02344e70ebd136a0cf6283356801c9b9c5adfbc1d64db19a3
PageCount 8
ParticipantIDs ieee_primary_9812239
PublicationCentury 2000
PublicationDate 2022-May-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-23
  day: 23
PublicationDecade 2020
PublicationTitle 2022 International Conference on Robotics and Automation (ICRA)
PublicationTitleAbbrev ICRA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8442887
Snippet In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point...
SourceID ieee
SourceType Publisher
StartPage 8748
SubjectTerms Automation
Big Data in Robotics and Automation
Bit rate
Computational modeling
Deep Learning for Visual Perception
Point cloud compression
RGB-D Perception
Three-dimensional displays
Training
Visualization
Title Variable Rate Compression for Raw 3D Point Clouds
URI https://ieeexplore.ieee.org/document/9812239
WOSCitedRecordID wos000941277601099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sGTSit-k4NHt02y2WRzlGpRkFKKlt5KsslCQXal3dW_72S7VAQv3sIQCDNh8mYy8xKAW68tTbilUY6HfyQUupS1PIk0pcaJNE94w0pbvKjpNF0u9awDd3sujPe-aT7zwzBsavmuzOpwVTbSiEY81l3oKqV2XK2W9MuoHj2P5_cCATTQTzgftpN__ZrSgMbk6H_LHcPgh31HZntcOYGOL_rAFpjUBpoTmWN0SIIb7zpYC4JhJwq_SPxAZuW6qMj4vazddgBvk8fX8VPUfncQrTmNq4jx3Cc8NxiyWXQGg2gqhFfUW8diaWiWSx4oUhJBJdNWZ4lxuc2Yk8JZpk18Cr2iLPwZEJlKIdHKmGDFIjWYxaEeTHnFrGDO6XPoB3VXH7sXLVatphd_iy_hMFg01Mx5fAW9alP7azjIPqv1dnPTbMM3Cc-HhQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_DotnntI0eplhZrKaWW3spmk4WC7Eq7q3_fyXapCF68hSEQZsLkm8nMlwDcW6WpzzX1Ujz8PRmiS2nNfU9RGhsZpT6vWGnzUTgeR4uFmjTgYceFsdZWzWe244ZVLd_kSemuyroK0YgLtQf7vpScbdlaNe2XUdUd9qaPEiHUEVA479TTf_2bUsFG__h_C55A-4d_RyY7ZDmFhs1awOaY1jqiE5lifEicI297WDOCgScKv4h4IpN8lRWk956XZtOGt_7zrDfw6g8PvBWnovAYT63P0xiDNo3uECOeSmlDarVhIohpkgbckaQChJVEaZX4sUl1wkwgjWYqFmfQzPLMngMJokAGaGdMsYSMYszjUA8W2pBpyYxRF9By6i4_tm9aLGtNL_8W38HhYPY6Wo6G45crOHLWdRV0Lq6hWaxLewMHyWex2qxvqy35BkuDisw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Variable+Rate+Compression+for+Raw+3D+Point+Clouds&rft.au=Al+Muzaddid%2C+Md+Ahmed&rft.au=Beksi%2C+William+J.&rft.date=2022-05-23&rft.pub=IEEE&rft.spage=8748&rft.epage=8755&rft_id=info:doi/10.1109%2FICRA46639.2022.9812239&rft.externalDocID=9812239