Variable Rate Compression for Raw 3D Point Clouds
In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networ...
Gespeichert in:
| Veröffentlicht in: | 2022 International Conference on Robotics and Automation (ICRA) S. 8748 - 8755 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
23.05.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networks for different compression rates to generate consolidated point clouds of varying quality. In contrast, our network is capable of explicitly processing point clouds and generating a compressed description at a comprehensive range of bitrates. Furthermore, our approach ensures that there is no loss of information as a result of the voxelization process and the density of the point cloud does not affect the encoder/decoder performance. An extensive experimental evaluation shows that our model obtains state-of-the-art results, it is computationally efficient, and it can work directly with point cloud data thus avoiding an expensive voxelized representation. |
|---|---|
| AbstractList | In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point cloud compression methods work on a downsampled representation of the data. Moreover, many existing techniques require training multiple networks for different compression rates to generate consolidated point clouds of varying quality. In contrast, our network is capable of explicitly processing point clouds and generating a compressed description at a comprehensive range of bitrates. Furthermore, our approach ensures that there is no loss of information as a result of the voxelization process and the density of the point cloud does not affect the encoder/decoder performance. An extensive experimental evaluation shows that our model obtains state-of-the-art results, it is computationally efficient, and it can work directly with point cloud data thus avoiding an expensive voxelized representation. |
| Author | Beksi, William J. Al Muzaddid, Md Ahmed |
| Author_xml | – sequence: 1 givenname: Md Ahmed surname: Al Muzaddid fullname: Al Muzaddid, Md Ahmed email: mdahmedal.muzaddid@mavs.uta.edu organization: University of Texas at Arlington,Department of Computer Science and Engineering,Arlington,TX,USA – sequence: 2 givenname: William J. surname: Beksi fullname: Beksi, William J. email: william.beksi@uta.edu organization: University of Texas at Arlington,Department of Computer Science and Engineering,Arlington,TX,USA |
| BookMark | eNotj11LwzAUQCPog879AkHyB1pzb9o093HUr8FAGZuvI2luINA1o62I_96BezpwHg6cO3E95IGFeARVAih6WrfbVWWMphIVYkkWEDVdiSU1Fhq0QObMWwFfbkzO9yy3bmbZ5uNp5GlKeZAxj2f5I_Wz_MxpmGXb5-8w3Yub6PqJlxcuxP71Zde-F5uPt3W72hQJlZ4LwMg1RkdE3ivlFOqq4kaxD6CNU100aLWujVXQkaeudiH6DoKpggdyeiEe_ruJmQ-nMR3d-Hu4jOg_ksZBWg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICRA46639.2022.9812239 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781728196817 1728196817 |
| EndPage | 8755 |
| ExternalDocumentID | 9812239 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-i203t-12fe52fa999bb00a02344e70ebd136a0cf6283356801c9b9c5adfbc1d64db19a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000941277601099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:14:56 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-12fe52fa999bb00a02344e70ebd136a0cf6283356801c9b9c5adfbc1d64db19a3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9812239 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May-23 |
| PublicationDateYYYYMMDD | 2022-05-23 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 International Conference on Robotics and Automation (ICRA) |
| PublicationTitleAbbrev | ICRA |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8442887 |
| Snippet | In this paper, we propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data. The majority of learning-based point... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 8748 |
| SubjectTerms | Automation Big Data in Robotics and Automation Bit rate Computational modeling Deep Learning for Visual Perception Point cloud compression RGB-D Perception Three-dimensional displays Training Visualization |
| Title | Variable Rate Compression for Raw 3D Point Clouds |
| URI | https://ieeexplore.ieee.org/document/9812239 |
| WOSCitedRecordID | wos000941277601099&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sGTSit-k4NHt02y2WRzlGpRkFKKlt5KsslCQXal3dW_72S7VAQv3sIQCDNh8mYy8xKAW68tTbilUY6HfyQUupS1PIk0pcaJNE94w0pbvKjpNF0u9awDd3sujPe-aT7zwzBsavmuzOpwVTbSiEY81l3oKqV2XK2W9MuoHj2P5_cCATTQTzgftpN__ZrSgMbk6H_LHcPgh31HZntcOYGOL_rAFpjUBpoTmWN0SIIb7zpYC4JhJwq_SPxAZuW6qMj4vazddgBvk8fX8VPUfncQrTmNq4jx3Cc8NxiyWXQGg2gqhFfUW8diaWiWSx4oUhJBJdNWZ4lxuc2Yk8JZpk18Cr2iLPwZEJlKIdHKmGDFIjWYxaEeTHnFrGDO6XPoB3VXH7sXLVatphd_iy_hMFg01Mx5fAW9alP7azjIPqv1dnPTbMM3Cc-HhQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_DotnntI0eplhZrKaWW3spmk4WC7Eq7q3_fyXapCF68hSEQZsLkm8nMlwDcW6WpzzX1Ujz8PRmiS2nNfU9RGhsZpT6vWGnzUTgeR4uFmjTgYceFsdZWzWe244ZVLd_kSemuyroK0YgLtQf7vpScbdlaNe2XUdUd9qaPEiHUEVA479TTf_2bUsFG__h_C55A-4d_RyY7ZDmFhs1awOaY1jqiE5lifEicI297WDOCgScKv4h4IpN8lRWk956XZtOGt_7zrDfw6g8PvBWnovAYT63P0xiDNo3uECOeSmlDarVhIohpkgbckaQChJVEaZX4sUl1wkwgjWYqFmfQzPLMngMJokAGaGdMsYSMYszjUA8W2pBpyYxRF9By6i4_tm9aLGtNL_8W38HhYPY6Wo6G45crOHLWdRV0Lq6hWaxLewMHyWex2qxvqy35BkuDisw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Robotics+and+Automation+%28ICRA%29&rft.atitle=Variable+Rate+Compression+for+Raw+3D+Point+Clouds&rft.au=Al+Muzaddid%2C+Md+Ahmed&rft.au=Beksi%2C+William+J.&rft.date=2022-05-23&rft.pub=IEEE&rft.spage=8748&rft.epage=8755&rft_id=info:doi/10.1109%2FICRA46639.2022.9812239&rft.externalDocID=9812239 |