Indoor Instance-Aware Semantic Mapping Using Instance Segmentation
In order to accomplish the requirement of scene understanding to complete various kinds of complex tasks in home environment for robots, a novel instance segmentation method is adopted to build an instance-level 3D semantic map and obtain information such as categories, positions and interrelationsh...
Uloženo v:
| Vydáno v: | Chinese Control and Decision Conference s. 3549 - 3554 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.05.2021
|
| Témata: | |
| ISSN: | 1948-9447 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In order to accomplish the requirement of scene understanding to complete various kinds of complex tasks in home environment for robots, a novel instance segmentation method is adopted to build an instance-level 3D semantic map and obtain information such as categories, positions and interrelationship of instance objects within the environment. Different from the previous method which focuses on a certain feature in geometry or vision, we synchronously learn the features of geometric and visual information, distinguish instance objects and background areas and create the feature voxel grid of the environment. The proposed 3D-RPN network takes the grid as input and makes use of the cuboid bounding box to predict each instance and the category it represents. With the mask prediction branch, we binarized voxels in each bounding box to determine the exact distribution of the instance object. Our method borrows the idea of Mask R-CNN and the main body is constructed by 3D and 2D convolutional network, making full use of the features of 2D and 3D. We have tested our method on ScanNet and S3DIS, two large-scale indoor scene data sets, and the experiment has verified that our method can find and identify the instance information more accurately than previous methods. |
|---|---|
| AbstractList | In order to accomplish the requirement of scene understanding to complete various kinds of complex tasks in home environment for robots, a novel instance segmentation method is adopted to build an instance-level 3D semantic map and obtain information such as categories, positions and interrelationship of instance objects within the environment. Different from the previous method which focuses on a certain feature in geometry or vision, we synchronously learn the features of geometric and visual information, distinguish instance objects and background areas and create the feature voxel grid of the environment. The proposed 3D-RPN network takes the grid as input and makes use of the cuboid bounding box to predict each instance and the category it represents. With the mask prediction branch, we binarized voxels in each bounding box to determine the exact distribution of the instance object. Our method borrows the idea of Mask R-CNN and the main body is constructed by 3D and 2D convolutional network, making full use of the features of 2D and 3D. We have tested our method on ScanNet and S3DIS, two large-scale indoor scene data sets, and the experiment has verified that our method can find and identify the instance information more accurately than previous methods. |
| Author | Jiang, Yinpeng Ma, Xudong Fang, Fang Kang, Xuewen |
| Author_xml | – sequence: 1 givenname: Yinpeng surname: Jiang fullname: Jiang, Yinpeng email: jyp_seu@seu.edu.cn organization: Academy of Automation, Southeast University,Nanjing,210000 – sequence: 2 givenname: Xudong surname: Ma fullname: Ma, Xudong organization: Academy of Automation, Southeast University,Nanjing,210000 – sequence: 3 givenname: Fang surname: Fang fullname: Fang, Fang organization: Academy of Automation, Southeast University,Nanjing,210000 – sequence: 4 givenname: Xuewen surname: Kang fullname: Kang, Xuewen email: 530100265@qq.com organization: Huaibei Normal University,Huaibei,China,235000 |
| BookMark | eNo1j0FLw0AUhFdRsK39BYLkD6Tue293s3ussWqg4kF7LpvkpayYTUgC4r-3Yr3MHOZjmJmLi9hFFuIW5ApAurs8f8g1EuAKJcLKGYlo8UwsXWbBGK2UtM6dixk4ZVOnVHYl5uP4IaUxJOVM3Bex7rohKeI4-Vhxuv7yAydv3Po4hSp58X0f4iHZjb_6Tx3zQ8tx8lPo4rW4bPznyMuTL8TucfOeP6fb16ciX2_TgJKmFLB0NtNgm-PIqq40U2aZGlIEVMustqRKgwYZgcE1rFWlsSZSytclEC3EzV9vYOZ9P4TWD9_702X6ASKqS_4 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC52312.2021.9602282 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665440899 1665440899 |
| EISSN | 1948-9447 |
| EndPage | 3554 |
| ExternalDocumentID | 9602282 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Nature Science Foundation grantid: 61573100 funderid: 10.13039/501100001809 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-12b987518f602cdc5e378e3f34313d07d834b6262e21e19fe54c52d3344adb133 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824370103106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 04:58:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-12b987518f602cdc5e378e3f34313d07d834b6262e21e19fe54c52d3344adb133 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9602282 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-May-22 |
| PublicationDateYYYYMMDD | 2021-05-22 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.7728525 |
| Snippet | In order to accomplish the requirement of scene understanding to complete various kinds of complex tasks in home environment for robots, a novel instance... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3549 |
| SubjectTerms | 3D Semantic Map 3D-RPN Feature extraction Feature Voxel Grid Geometry Instance Segmentation Mask Feature Navigation Semantics Solid modeling Three-dimensional displays Visualization |
| Title | Indoor Instance-Aware Semantic Mapping Using Instance Segmentation |
| URI | https://ieeexplore.ieee.org/document/9602282 |
| WOSCitedRecordID | wos000824370103106&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMsPFrEWxkYSRu_kniEQEUlqCoBUrcqti9VhyYopPD3sdNQQGJhs_yQrbPlu8_n7w7gMuaKorA7QFKlfG7PkB-nMvKFyUKqJUuzrM5a8hCNx_F0KictuNpwYRCx_nyGfVesffmm0Cv3VDaw1ja1EKEN7SgK11ytr1s3dKGjGgYwCeQgSW4Ti7GI41pR0m9G_kqhUmuQ4e7_5t6D3jcVz5tslMw-tDA_gJ0fUQS7cDPKTVGU3qi29DT61x9pid4TLq3UFtp7TF0MhrlX_w7Y9LLt82VDPMp78DK8e07u_SY1gr-gAat8QpWMnccks8vSRgtkUYwsY9YeYCaITMy4sliFIiVIZIaCa0ENY5ynRllcegidvMjxCDyqOdEqpZFFijzMtFIiMEpKbgRa3SWOoeukMXtdR7-YNYI4-bv6FLadwJ1_ndIz6FTlCs9hS79Xi7fyot6yTwa6lpY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmqgXH2h8uwePLmxf7PaoKIEIhERMuJFtO0s4sGtW0L9vu6yoiRdvTR9pM20683X6zQDcRFxRFHYHSKyUz-0Z8qNYhr4wSZNqyeIkKbKW9MLBIBqP5bACt2suDCIWn8-w7oqFL99keumeyhrW2qYWImzApuCcBiu21te923TBo0oOMAlko9V6aFmURRzbipJ6OfZXEpVCh7T3_jf7Phx9k_G84VrNHEAF00PY_RFHsAb33dRkWe51C1tPo3_3EefoPePcym2mvX7sojBMveJ_wLqXbZ_OS-pRegQv7cdRq-OXyRH8GQ3YwidUycj5TBK7LG20QBZGyBJmLQJmgtBEjCuLVihSgkQmKLgW1DDGeWyURabHUE2zFE_Ao5oTrWIaWqzIm4lWSgRGScmNQKu9xCnUnDQmr6v4F5NSEGd_V1_DdmfU70163cHTOew44TtvO6UXUF3kS7yELf2-mL3lV8X2fQIOi5nd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Indoor+Instance-Aware+Semantic+Mapping+Using+Instance+Segmentation&rft.au=Jiang%2C+Yinpeng&rft.au=Ma%2C+Xudong&rft.au=Fang%2C+Fang&rft.au=Kang%2C+Xuewen&rft.date=2021-05-22&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3549&rft.epage=3554&rft_id=info:doi/10.1109%2FCCDC52312.2021.9602282&rft.externalDocID=9602282 |