Facial Image Denoising Using Convolutional Autoencoder Network
Noise effects can interfere the face recognition process in outdoor conditions. Therefore, image denoising topic is the classical issue in the field of image processing and computer vision subjects. In this paper, we show that the solution of denoising process using the autoencoder networks based on...
Gespeichert in:
| Veröffentlicht in: | 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2020
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Noise effects can interfere the face recognition process in outdoor conditions. Therefore, image denoising topic is the classical issue in the field of image processing and computer vision subjects. In this paper, we show that the solution of denoising process using the autoencoder networks based on the ORL face database. The proposed method can support face recognition systems designed for use in an outdoor environment as the preprocessing stage and it can provide the effective results after training process. |
|---|---|
| AbstractList | Noise effects can interfere the face recognition process in outdoor conditions. Therefore, image denoising topic is the classical issue in the field of image processing and computer vision subjects. In this paper, we show that the solution of denoising process using the autoencoder networks based on the ORL face database. The proposed method can support face recognition systems designed for use in an outdoor environment as the preprocessing stage and it can provide the effective results after training process. |
| Author | Tun, Naing Min Tun, Nyan Linn Gavrilov, Alexander I. |
| Author_xml | – sequence: 1 givenname: Naing Min surname: Tun fullname: Tun, Naing Min organization: Bauman Moscow State Technical University,Moscow,Russia – sequence: 2 givenname: Alexander I. surname: Gavrilov fullname: Gavrilov, Alexander I. organization: Bauman Moscow State Technical University,Moscow,Russia – sequence: 3 givenname: Nyan Linn surname: Tun fullname: Tun, Nyan Linn organization: Bauman Moscow State Technical University,Moscow,Russia |
| BookMark | eNotj0FOwzAQRY0EC1o4AZtcIGFm7NT2BikKLUQqsKHrynEmlUVqozQFcXsQ7ea_zdOT_kxcxhRZiAyhQAR739TNsnpRRi1MQUBQWEQCAxdihpoMqtICXYuHlfPBDVmzdzvOHjmmcAhxl23-t07xKw3HKaT451THKXH0qeMxe-XpO40fN-Kqd8OBb8-ci81q-V4_5-u3p6au1nkgkFOO2PtOSd1JbxU4ubAlOUuOyq4jKZ2W6Ixlrdi3tm9bZzxpQ60H0GSxlXNxd-oGZt5-jmHvxp_t-ZL8BQ-HRqQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIEAM48468.2020.9112080 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1728145902 9781728145907 |
| EndPage | 5 |
| ExternalDocumentID | 9112080 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i203t-11fcd437d3c940a36952a92a25dd233a731a89e74ecb9fbba8c2782bc007291b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607234900210&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:37:54 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-11fcd437d3c940a36952a92a25dd233a731a89e74ecb9fbba8c2782bc007291b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9112080 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-May |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) |
| PublicationTitleAbbrev | ICIEAM |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.780414 |
| Snippet | Noise effects can interfere the face recognition process in outdoor conditions. Therefore, image denoising topic is the classical issue in the field of image... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Autoencoder convolutional neural networks Face recognition image denoising Image recognition Industrial engineering Neural networks Noise reduction Training |
| Title | Facial Image Denoising Using Convolutional Autoencoder Network |
| URI | https://ieeexplore.ieee.org/document/9112080 |
| WOSCitedRecordID | wos000607234900210&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-2YNH024e2yQXodQWC1p6UOmt5LXQg7tSt_39Jtm1InjxFsIkIc8vyXwzA3DrMUVzpS2yghjEuNBIEJwjwkRqnQdkEcMBvT3x-Vwsl3LRgru9LYxzLpLPXD8koy7flmYbvsoGfmMSf8NpQ5vzYW2r9U3OSeVgNp5NRs_MA2qgbJG034j_ipsSYWN69L8Gj6H3Y3-XLPbIcgItV3ThfqrC93Yye_dHQPLginId3vlJVPonvuSuWUVeZrStyuCh0rpNMq-J3j14nU5exo-oiX6A1iSlFcI4N5ZRbqmRLFV0KDOiJFEks5ZQqjjFSkjHmTNa5lorYYiHe22iM3Cs6Sl0irJwZ36ElNMyzc1QScwyjrXWFme-epoHu1d1Dt3Q99VH7eBi1XT74u_sSzgMw1uz_q6gU2227hoOzK5af25u4qx8AfE_j1A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4QTfSkBoy7c_BoocsMbS8mBCFMhAkHNNxIt0k4MGNw4PfbzowYEy_emqZLXrev7fveewA8OkxRTCoDDScahowryAlOIQk5MtYBMi_DAb1PWJLwxULMGuBpbwtjrS3JZ7bjk6Uu3-R667_Kum5jEnfDOQCHPnIWqqy1vuk5SHTjQTzsT0MHqZ60RVCnrvArckoJHKPT_3V5Bto_FnjBbI8t56BhsxZ4Hkn_wR3Ea3cIBC82y1f-pR-Uav_A1dzV68iV6W-L3PuoNHYTJBXVuw3eRsP5YAzr-AdwRRAtIMapNiFlhmoRIkl7IiJSEEkiYwilklEsubAstFqJVCnJNXGAr3TpDhwregGaWZ7ZSzdC0iqBUt2TAocRw0opgyPXPE295au8Ai0v-_KjcnGxrMW-_jv7ARyP59PJchInrzfgxA91xQG8Bc1is7V34EjvitXn5r6coS-U35KW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+International+Conference+on+Industrial+Engineering%2C+Applications+and+Manufacturing+%28ICIEAM%29&rft.atitle=Facial+Image+Denoising+Using+Convolutional+Autoencoder+Network&rft.au=Tun%2C+Naing+Min&rft.au=Gavrilov%2C+Alexander+I.&rft.au=Tun%2C+Nyan+Linn&rft.date=2020-05-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICIEAM48468.2020.9112080&rft.externalDocID=9112080 |