AME: Attention and Memory Enhancement in Hyper-Parameter Optimization

Training Deep Neural Networks (DNNs) is inherently subject to sensitive hyper-parameters and untimely feedbacks of performance evaluation. To solve these two difficulties, an efficient parallel hyper-parameter optimization model is proposed under the framework of Deep Reinforcement Learning (DRL). T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 480 - 489
Hlavní autoři: Xu, Nuo, Chang, Jianlong, Nie, Xing, Huo, Chunlei, Xiang, Shiming, Pan, Chunhong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2022
Témata:
ISSN:1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Training Deep Neural Networks (DNNs) is inherently subject to sensitive hyper-parameters and untimely feedbacks of performance evaluation. To solve these two difficulties, an efficient parallel hyper-parameter optimization model is proposed under the framework of Deep Reinforcement Learning (DRL). Technically, we develop Attention and Memory Enhancement (AME), that includes multi-head attention and memory mechanism to enhance the ability to capture both the short-term and long-term relationships between different hyper-parameter configurations, yielding an attentive sampling mechanism for searching high-performance configurations embedded into a huge search space. During the optimization of transformer-structured configuration searcher, a conceptually intuitive yet powerful strategy is applied to solve the problem of insufficient number of samples due to the untimely feedback. Experiments on three visual tasks, including image classification, object detection, semantic segmentation, demonstrate the effectiveness of AME.
ISSN:1063-6919
DOI:10.1109/CVPR52688.2022.00057