Effectively and Efficiently Supporting Predictive Big Data Analytics over Open Big Data in the Transportation Sector: A Bayesian Network Framework

Today, various types of valuable data can be collected with ease and at a rapid pace. In recent years, many governments, researchers, and organizations have been driven by open data pioneers, to make their data available for public. Transportation data, such as public bus performance data, is an exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) S. 1 - 8
Hauptverfasser: Cuzzocrea, Alfredo, Leung, Carson K., Hajian, Mojtaba, Jackson, Marshall D.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 12.09.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Today, various types of valuable data can be collected with ease and at a rapid pace. In recent years, many governments, researchers, and organizations have been driven by open data pioneers, to make their data available for public. Transportation data, such as public bus performance data, is an example of open big data. The analyzing of these open big data can be used in social services. For example, bus service operators might get a vision into time delays in bus services by processing and mining public bus performance data. Then, making ameliorative steps (e.g., adding more buses, rerouting some bus routes, etc.) results in improving the feeling of the passenger. We provide a Bayesian framework, which is applied on big data obtained from transportation system. Specifically, a number of Bayesian networks have been used in our framework to predict whether a bus will arrive late or early at a specific bus stop. We investigate and establish the optimum network settings and/or parameter permutations for each (bus stop, bus route, arrival time)-triplet. The results demonstrate that the proposed Bayesian framework effectively supports predictive analytics on big transportation data collected from the City of Winnipeg, Manitoba, Canada.
AbstractList Today, various types of valuable data can be collected with ease and at a rapid pace. In recent years, many governments, researchers, and organizations have been driven by open data pioneers, to make their data available for public. Transportation data, such as public bus performance data, is an example of open big data. The analyzing of these open big data can be used in social services. For example, bus service operators might get a vision into time delays in bus services by processing and mining public bus performance data. Then, making ameliorative steps (e.g., adding more buses, rerouting some bus routes, etc.) results in improving the feeling of the passenger. We provide a Bayesian framework, which is applied on big data obtained from transportation system. Specifically, a number of Bayesian networks have been used in our framework to predict whether a bus will arrive late or early at a specific bus stop. We investigate and establish the optimum network settings and/or parameter permutations for each (bus stop, bus route, arrival time)-triplet. The results demonstrate that the proposed Bayesian framework effectively supports predictive analytics on big transportation data collected from the City of Winnipeg, Manitoba, Canada.
Author Leung, Carson K.
Hajian, Mojtaba
Jackson, Marshall D.
Cuzzocrea, Alfredo
Author_xml – sequence: 1
  givenname: Alfredo
  surname: Cuzzocrea
  fullname: Cuzzocrea, Alfredo
  email: alfredo.cuzzocrea@unical.it
  organization: University of Calabria,iDEA Lab,Rende,Italy
– sequence: 2
  givenname: Carson K.
  surname: Leung
  fullname: Leung, Carson K.
  email: Carson.Leung@UManitoba.ca
  organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada
– sequence: 3
  givenname: Mojtaba
  surname: Hajian
  fullname: Hajian, Mojtaba
  email: mojtaba.hajian@unical.it
  organization: University of Calabria,iDEA Lab,Rende,Italy
– sequence: 4
  givenname: Marshall D.
  surname: Jackson
  fullname: Jackson, Marshall D.
  email: umJack45@myUManitoba.ca
  organization: University of Manitoba,Department of Computer Science,Winnipeg,MB,Canada
BookMark eNpFUM1OwkAYXBM9KPIEXvYFKPvTdrfeSsGfhAgJeCZfu19xI2ybZcX0NXxiC5J4mpnMZCaZO3LtGoeERJxFnLNsPM1XxXhpi2Y_LibTM3RJIiSPBBMiyjKhlNZXZJgpzdM0iVORqfSW_MzqGqtgj7jrKDhDe20riy70evXVto0P1m3p0qOx5xyd2C2dQgCaO9h1wVYH2hzR00WL7t-0joYPpGsP7nAqgWAbR1f9VuMfaU4n0OHBgqNvGL4b_0mfPOzxxO7JTQ27Aw4vOCDvT7N18TKaL55fi3w-soLJMOIsQaGNFrFMpUlA1brUQlayLBlXAGCqhFcyxv4fgBIhNYlShiGYGIxmckAe_notIm5ab_fgu83lKfkLkaJrNQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927788
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Government
EISBN 9781665462976
1665462973
EndPage 8
ExternalDocumentID 9927788
Genre orig-research
GrantInformation_xml – fundername: University of Manitoba
  funderid: 10.13039/100010318
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-105e28d824363d5a7f8b823c3bb017aaadc51c34e110aabea6d577d0ead4ad803
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000948109800177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:14:35 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-105e28d824363d5a7f8b823c3bb017aaadc51c34e110aabea6d577d0ead4ad803
PageCount 8
ParticipantIDs ieee_primary_9927788
PublicationCentury 2000
PublicationDate 2022-Sept.-12
PublicationDateYYYYMMDD 2022-09-12
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.-12
  day: 12
PublicationDecade 2020
PublicationTitle 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)
PublicationTitleAbbrev DASC/PiCom/CBDCom/CyberSciTech
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8138853
Snippet Today, various types of valuable data can be collected with ease and at a rapid pace. In recent years, many governments, researchers, and organizations have...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bayes methods
Big Data
big data analytics
big data applications
big data management
big data systems
Data systems
Delay effects
Government
open big data
Transportation
Urban areas
Title Effectively and Efficiently Supporting Predictive Big Data Analytics over Open Big Data in the Transportation Sector: A Bayesian Network Framework
URI https://ieeexplore.ieee.org/document/9927788
WOSCitedRecordID wos000948109800177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBVJKCWnLknpjg491rFj2ZbcW1Z6CoG0kFsYLQmG4pTUKeQ3-sXVyG5CoZeevMiWYbR5NPPeI-QhlRHECpG5XAVelLCuJ4XCLAvTTZBhPJHgxCb4ZCLm83RaI497LIwxxiWfmQ6euli-XqstbpX5aRpy67LVSZ3zpMRqHZNORZvpD3uzgT_N7DjyB_2hO-xi62ehFxiGnerlXyoqbhEZn_zv86ekfUDj0el-nTkjNZOfk-ZBJLdFvkoOYjtxve0o5JqOHDGELbPXqNu5Rq6Ala0FwzL4HO1nKzqEAqhjJUGuZooVUkwwORRmObU_iHTPgO6akc7cTv8T7dE-7AyiMOmkzCan459crzZ5HY9eBs9eJbbgZWHACjsdxyYUWoQRS5iOgS-FFCFTTEo7aAFAq7irWGSsrQGkgUTHnOvA9sQItAjYBWnk69xcEirZEgIOgQw5KlsLgYQvscSIo3VOWHJFWmjcxXvJp7Go7Hr99-0b0sT285xswy1pFJutuSNH6rPIPjb3rhN8A2Cgte4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VgqAnloLY8YEjadI4i8Otq4ooUaUWqbfKdtwqEkpRSZH6G3wxHje0QuLCKYsTKxpvGc-89wDuI-FxXyIyN5SO5QW0bgkmMctC1QNkGA8EN2ITYRyz8TgalOBhg4VRSpnkM1XDUxPLT-ZyiVtldhS5oXbZdmAXlbMKtNY-1AriTLvdGLbsQapHkt1qts1h5WtPC_1A160Vr__SUTHLSPfwfx9wBKdbPB4ZbFaaYyip7AQqW5ncKnytWYj11PW2IjxLSMdQQ-gyfY3KnXNkC5jpWjAwg8-RZjojbZ5zYnhJkK2ZYIUEU0y2hWlG9C8i2XCgm4YkQ7PX_0gapMlXCnGYJF7nk5PuT7bXKbx2O6NWzyrkFqzUdWiuJ2RfuSxhrkcDmvg8nDLBXCqpEHrYcs4T6dcl9ZS2NedC8SDxwzBxdF_0eMIcegblbJ6pcyCCTrkTcke4IWpbM4aUL77AmKN2T2hwAVU07uR9zagxKex6-fftOzjojV76k_5T_HwFFWxLy4g4XEM5XyzVDezJzzz9WNyaDvENAVK5Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Intl+Conf+on+Dependable%2C+Autonomic+and+Secure+Computing%2C+Intl+Conf+on+Pervasive+Intelligence+and+Computing%2C+Intl+Conf+on+Cloud+and+Big+Data+Computing%2C+Intl+Conf+on+Cyber+Science+and+Technology+Congress+%28DASC%2FPiCom%2FCBDCom%2FCyberSciTech%29&rft.atitle=Effectively+and+Efficiently+Supporting+Predictive+Big+Data+Analytics+over+Open+Big+Data+in+the+Transportation+Sector%3A+A+Bayesian+Network+Framework&rft.au=Cuzzocrea%2C+Alfredo&rft.au=Leung%2C+Carson+K.&rft.au=Hajian%2C+Mojtaba&rft.au=Jackson%2C+Marshall+D.&rft.date=2022-09-12&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FDASC%2FPiCom%2FCBDCom%2FCy55231.2022.9927788&rft.externalDocID=9927788