A simulation-based evaluation of a disk I/O subsystem for a massively parallel computer: JUMP-1
JUMP-1 is a distributed shared-memory massively parallel computer and is composed of multiple clusters of inter-connected network called RDT (Recursive Diagonal Torus). Each cluster in JUMP-1 consists of 4 element processors, secondary cache memories, and 2 MBP (Memory Based Processor) for high-spee...
Uložené v:
| Vydané v: | Proceedings of the 16th International Conference on Distributed Computing Systems s. 562 - 569 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
IEEE
23.12.2002
|
| Predmet: | |
| ISBN: | 9780818673993, 0818673990 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | JUMP-1 is a distributed shared-memory massively parallel computer and is composed of multiple clusters of inter-connected network called RDT (Recursive Diagonal Torus). Each cluster in JUMP-1 consists of 4 element processors, secondary cache memories, and 2 MBP (Memory Based Processor) for high-speed synchronization and communication among clusters. The I/O subsystem is connected to a cluster via a high-speed serial link called STAFF-Link. The I/O buffer memory is mapped onto the JUMP-1 global shared-memory to permit each I/O access operation as memory access. In this paper we describe evaluation of the fundamental performance of the disk I/O subsystem using event-driven simulation, and estimated performance with a Video On Demand (VOD) application. |
|---|---|
| ISBN: | 9780818673993 0818673990 |
| DOI: | 10.1109/ICDCS.1996.508006 |

