Hyperspectral Image Restoration via Global L1-2 Spatial-Spectral Total Variation Regularized Local Low-Rank Tensor Recovery
Hyperspectral images (HSIs) are usually corrupted by various noises, e.g., Gaussian noise, impulse noise, stripes, dead lines, and many others. In this article, motivated by the good performance of the <inline-formula> <tex-math notation="LaTeX">L_{1-2} </tex-math></in...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 59; číslo 4; s. 3309 - 3325 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Hyperspectral images (HSIs) are usually corrupted by various noises, e.g., Gaussian noise, impulse noise, stripes, dead lines, and many others. In this article, motivated by the good performance of the <inline-formula> <tex-math notation="LaTeX">L_{1-2} </tex-math></inline-formula> nonconvex metric in image sparse structure exploitation, we first develop a 3-D <inline-formula> <tex-math notation="LaTeX">L_{1-2} </tex-math></inline-formula> spatial-spectral total variation (<inline-formula> <tex-math notation="LaTeX">L_{1-2} </tex-math></inline-formula>SSTV) regularization to globally represent the sparse prior in the gradient domain of HSIs. Then, we divide HSIs into local overlapping 3-D patches, and low-rank tensor recovery (LTR) is locally used to effectively separate the low-rank clean HSI patches from complex noise. The patchwise LTR can not only adapt to the local low-rank property of HSIs well but also significantly reduce the information loss caused by the global LTR. Finally, integrating the advantages of both the global <inline-formula> <tex-math notation="LaTeX">L_{1-2} </tex-math></inline-formula>SSTV regularization and local LTR model, we propose a <inline-formula> <tex-math notation="LaTeX">L_{1-2} </tex-math></inline-formula>SSTV regularized local LTR model for hyperspectral restoration. In the framework of the alternating direction method of multipliers, the difference of convex algorithm, the split Bregman iteration method, and tensor singular value decomposition method are adopted to solve the proposed model efficiently. Simulated and real HSI experiments show that the proposed model can reduce the dependence on noise independent and identical distribution hypotheses, and simultaneously remove various types of noise, even structure-related noise. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0196-2892 1558-0644 |
| DOI: | 10.1109/TGRS.2020.3007945 |